/usr/include/ITK-4.5/itkShapePriorMAPCostFunction.h is in libinsighttoolkit4-dev 4.5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 | /*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef __itkShapePriorMAPCostFunction_h
#define __itkShapePriorMAPCostFunction_h
#include "itkShapePriorMAPCostFunctionBase.h"
#include "itkGaussianKernelFunction.h"
namespace itk
{
/** \class ShapePriorMAPCostFunction
* \brief Represents the maximum aprior (MAP) cost function used
* ShapePriorSegmentationLevelSetImageFilter to estimate the shape paramaeters.
*
* This class follows the shape and pose parameters estimation developed in [1].
* Note that this class returns the negative log of the MAP function.
* Using the negative function make this cost function compatible
* with generic optimizers which seeks the minimum of a cost function.
*
* This class has two template parameters, the feature image type representing the
* edge potential map and the pixel type used to
* represent the output level set in the ShapePriorSegmentationLevelSetImageFilter.
*
* \sa ShapePriorSegmentationLevelSetImageFilter
*
* \par REFERENCES
* \par
* [1] Leventon, M.E. et al. "Statistical Shape Influence in Geodesic Active Contours", CVPR 2000.
*
*
* \ingroup Numerics Optimizers
* \ingroup ITKLevelSets
*/
template< typename TFeatureImage, typename TOutputPixel >
class ShapePriorMAPCostFunction:
public ShapePriorMAPCostFunctionBase< TFeatureImage, TOutputPixel >
{
public:
/** Standard class typedefs. */
typedef ShapePriorMAPCostFunction Self;
typedef ShapePriorMAPCostFunctionBase< TFeatureImage, TOutputPixel > Superclass;
typedef SmartPointer< Self > Pointer;
typedef SmartPointer< const Self > ConstPointer;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** Run-time type information (and related methods). */
itkTypeMacro(ShapePriorMAPCostFunction, ShapePriorMAPCostFunctionBase);
/** ParametersType typedef.
* It defines a position in the optimization search space. */
typedef typename Superclass::ParametersType ParametersType;
/** Type of the feature image representing the edge potential map. */
typedef typename Superclass::FeatureImageType FeatureImageType;
typedef typename Superclass::FeatureImagePointer FeatureImagePointer;
/** Type of the return measure value. */
typedef typename Superclass::MeasureType MeasureType;
/** Dimension constant. */
itkStaticConstMacro(ImageDimension, unsigned int, TFeatureImage::ImageDimension);
/** Type of pixel used to represent the level set. */
typedef typename Superclass::PixelType PixelType;
/** Type of node used to represent the active region around the zero set. */
typedef typename Superclass::NodeType NodeType;
/** Type of container used to store the level set nodes. */
typedef typename Superclass::NodeContainerType NodeContainerType;
/** Type of the shape signed distance function. */
typedef typename Superclass::ShapeFunctionType ShapeFunctionType;
/** Type of the array for storing shape parameter mean and standard deivation.
* FIXME: should be templated.
*/
typedef Array< double > ArrayType;
/** Set/Get the array of shape parameters mean. */
itkSetMacro(ShapeParameterMeans, ArrayType);
itkGetConstMacro(ShapeParameterMeans, ArrayType);
/** Set/Get the array of shape parameters standard deviation. */
itkSetMacro(ShapeParameterStandardDeviations, ArrayType);
itkGetConstMacro(ShapeParameterStandardDeviations, ArrayType);
/** Set/Get the weights for each term. Default is a vector of all ones.
* The weights are applied to terms in the following order:
* LogInsideTerm, LogGradientTerm, LogShapePriorTerm and
* LogPosePriorTerm. */
typedef FixedArray< double, 4 > WeightsType;
itkSetMacro(Weights, WeightsType);
itkGetConstReferenceMacro(Weights, WeightsType);
/** Compute the inside term component of the MAP cost function.
* In particular, the method sums the number of pixels inside
* the current contour (defined by nodes of the active region
* that are less than zero) which are outside the shape
* specified by the input parameters. */
virtual MeasureType ComputeLogInsideTerm(const ParametersType & parameters) const;
/** Compute the gradient term component of the MAP cost function.
* In particular, this method assume that ( 1 - FeatureImage ) approximates
* a Gaussian (zero mean, unit variance) algon the normal of the evolving contour.
* The gradient term is then given by a Laplacian of the goodness of fit of
* the Gaussian. */
virtual MeasureType ComputeLogGradientTerm(const ParametersType & parameters) const;
/** Compute the shape prior component of the MAP cost function.
* In particular, the method assumes that the shape parameters comes from
* independent Gaussian distributions defined by the ShapeParameterMeans
* and ShapeParameterVariances array. */
virtual MeasureType ComputeLogShapePriorTerm(const ParametersType & parameters) const;
/** Compute the pose prior component of the MAP cost function.
* In particular, this method assumes that the pose parameters are
* uniformly distributed and returns a constant of zero. */
virtual MeasureType ComputeLogPosePriorTerm(const ParametersType & parameters) const;
/** Initialize the cost function by making sure that all the components
* are present. */
virtual void Initialize(void)
throw ( ExceptionObject );
protected:
ShapePriorMAPCostFunction();
virtual ~ShapePriorMAPCostFunction() {}
void PrintSelf(std::ostream & os, Indent indent) const;
private:
ShapePriorMAPCostFunction(const Self &); //purposely not implemented
void operator=(const Self &); //purposely not implemented
ArrayType m_ShapeParameterMeans;
ArrayType m_ShapeParameterStandardDeviations;
WeightsType m_Weights;
typename GaussianKernelFunction<double>::Pointer m_GaussianFunction;
};
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkShapePriorMAPCostFunction.hxx"
#endif
#endif
|