This file is indexed.

/usr/include/ITK-4.5/itkShapePriorMAPCostFunction.hxx is in libinsighttoolkit4-dev 4.5.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef __itkShapePriorMAPCostFunction_hxx
#define __itkShapePriorMAPCostFunction_hxx

#include "itkShapePriorMAPCostFunction.h"

namespace itk
{
/**
 * Constructor
 */
template< typename TFeatureImage, typename TOutputPixel >
ShapePriorMAPCostFunction< TFeatureImage, TOutputPixel >
::ShapePriorMAPCostFunction()
{
  m_GaussianFunction = GaussianKernelFunction<double>::New();
  m_ShapeParameterMeans = ArrayType(1);
  m_ShapeParameterMeans.Fill(0.0);
  m_ShapeParameterStandardDeviations = ArrayType(1);
  m_ShapeParameterStandardDeviations.Fill(0.0);
  m_Weights.Fill(1.0);
}

/**
 * PrintSelf
 */
template< typename TFeatureImage, typename TOutputPixel >
void
ShapePriorMAPCostFunction< TFeatureImage, TOutputPixel >
::PrintSelf(std::ostream & os, Indent indent) const
{
  Superclass::PrintSelf(os, indent);
  os << indent << "ShapeParameterMeans: " << m_ShapeParameterMeans << std::endl;
  os << indent << "ShapeParameterStandardDeviations:  ";
  os << m_ShapeParameterStandardDeviations  << std::endl;
  os << indent << "Weights: " << m_Weights << std::endl;
}

/**
 *
 */
template< typename TFeatureImage, typename TOutputPixel >
typename ShapePriorMAPCostFunction< TFeatureImage, TOutputPixel >
::MeasureType
ShapePriorMAPCostFunction< TFeatureImage, TOutputPixel >
::ComputeLogInsideTerm(const ParametersType & parameters) const
{
  this->m_ShapeFunction->SetParameters(parameters);

  typename NodeContainerType::ConstIterator iter = this->GetActiveRegion()->Begin();
  typename NodeContainerType::ConstIterator end  = this->GetActiveRegion()->End();

  MeasureType counter = 0.0;

  // count the number of pixels inside the current contour but outside the
  // current shape
  while ( iter != end )
    {
    NodeType node = iter.Value();
    typename ShapeFunctionType::PointType point;

    this->GetFeatureImage()->TransformIndexToPhysicalPoint(node.GetIndex(), point);

    if ( node.GetValue() <= 0.0 )
      {
      double value = this->m_ShapeFunction->Evaluate(point);
      if ( value > 0.0 )
        {
        counter += 1.0;
        }
      else if ( value > -1.0 )
        {
        counter += ( 1.0 + value );
        }
      }

    ++iter;
    }

  MeasureType output = counter * m_Weights[0];
  return output;
}

/**
 *
 */
template< typename TFeatureImage, typename TOutputPixel >
typename ShapePriorMAPCostFunction< TFeatureImage, TOutputPixel >
::MeasureType
ShapePriorMAPCostFunction< TFeatureImage, TOutputPixel >
::ComputeLogShapePriorTerm(const ParametersType & parameters) const
{
  // assume the shape parameters is from a independent gaussian distributions
  MeasureType measure = 0.0;

  for ( unsigned int j = 0; j < this->m_ShapeFunction->GetNumberOfShapeParameters(); j++ )
    {
    measure += vnl_math_sqr( ( parameters[j] - m_ShapeParameterMeans[j] )
                             / m_ShapeParameterStandardDeviations[j] );
    }
  measure *= m_Weights[2];
  return measure;
}

/**
 *
 */
template< typename TFeatureImage, typename TOutputPixel >
typename ShapePriorMAPCostFunction< TFeatureImage, TOutputPixel >
::MeasureType
ShapePriorMAPCostFunction< TFeatureImage, TOutputPixel >
::ComputeLogGradientTerm(const ParametersType & parameters) const
{
  this->m_ShapeFunction->SetParameters(parameters);

  typename NodeContainerType::ConstIterator iter = this->GetActiveRegion()->Begin();
  typename NodeContainerType::ConstIterator end  = this->GetActiveRegion()->End();
  MeasureType sum = 0.0;

  // Assume that ( 1 - FeatureImage ) approximates a Gaussian (zero mean, unit
  // variance)
  // along the normal of the evolving contour.
  // The GradientTerm is then given by a Laplacian of the goodness of fit of
  // the Gaussian.
  while ( iter != end )
    {
    NodeType node = iter.Value();
    typename ShapeFunctionType::PointType point;

    this->GetFeatureImage()->TransformIndexToPhysicalPoint(node.GetIndex(), point);

    sum += vnl_math_sqr( m_GaussianFunction->Evaluate( this->m_ShapeFunction->Evaluate(point) )
                         - 1.0 + this->GetFeatureImage()->GetPixel( node.GetIndex() ) );

    ++iter;
    }

  sum *= m_Weights[1];
//  std::cout << sum << " ";
  return sum;
}

/**
 *
 */
template< typename TFeatureImage, typename TOutputPixel >
typename ShapePriorMAPCostFunction< TFeatureImage, TOutputPixel >
::MeasureType
ShapePriorMAPCostFunction< TFeatureImage, TOutputPixel >
::ComputeLogPosePriorTerm( const ParametersType & itkNotUsed(parameters) ) const
{
  return 0.0;
}

/**
 *
 */
template< typename TFeatureImage, typename TOutputPixel >
void
ShapePriorMAPCostFunction< TFeatureImage, TOutputPixel >
::Initialize(void)
throw ( ExceptionObject )
{
  this->Superclass::Initialize();

  // check if the mean and variances array are of the right size
  if ( m_ShapeParameterMeans.Size() <
       this->m_ShapeFunction->GetNumberOfShapeParameters() )
    {
    itkExceptionMacro(<< "ShapeParameterMeans does not have at least "
                      << this->m_ShapeFunction->GetNumberOfShapeParameters()
                      << " number of elements.");
    }

  if ( m_ShapeParameterStandardDeviations.Size() <
       this->m_ShapeFunction->GetNumberOfShapeParameters() )
    {
    itkExceptionMacro(<< "ShapeParameterStandardDeviations does not have at least "
                      << this->m_ShapeFunction->GetNumberOfShapeParameters()
                      << " number of elements.");
    }
}
} // end namespace itk

#endif