This file is indexed.

/usr/include/ITK-4.5/itkSimilarity3DTransform.h is in libinsighttoolkit4-dev 4.5.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef __itkSimilarity3DTransform_h
#define __itkSimilarity3DTransform_h

#include <iostream>
#include "itkVersorRigid3DTransform.h"

namespace itk
{
/** \class Similarity3DTransform
 * \brief Similarity3DTransform of a vector space (e.g. space coordinates)
 *
 * This transform applies a rotation, translation and isotropic scaling to the space.
 *
 * The parameters for this transform can be set either using individual Set
 * methods or in serialized form using SetParameters() and SetFixedParameters().
 *
 * The serialization of the optimizable parameters is an array of 7 elements.
 * The first 3 elements are the components of the versor representation
 * of 3D rotation. The next 3 parameters defines the translation in each
 * dimension. The last parameter defines the isotropic scaling.
 *
 * The serialization of the fixed parameters is an array of 3 elements defining
 * the center of rotation.
 *
 *
 * \sa VersorRigid3DTransform
 * \ingroup ITKTransform
 */
template< typename TScalar = double >
// Data type for scalars (float or double)
class Similarity3DTransform :
  public VersorRigid3DTransform< TScalar >
{
public:
  /** Standard class typedefs. */
  typedef Similarity3DTransform             Self;
  typedef VersorRigid3DTransform< TScalar > Superclass;
  typedef SmartPointer< Self >              Pointer;
  typedef SmartPointer< const Self >        ConstPointer;

  /** New macro for creation of through a Smart Pointer. */
  itkNewMacro(Self);

  /** Run-time type information (and related methods). */
  itkTypeMacro(Similarity3DTransform, VersorRigid3DTransform);

  /** Dimension of parameters. */
  itkStaticConstMacro(SpaceDimension, unsigned int, 3);
  itkStaticConstMacro(InputSpaceDimension, unsigned int, 3);
  itkStaticConstMacro(OutputSpaceDimension, unsigned int, 3);
  itkStaticConstMacro(ParametersDimension, unsigned int, 7);

  /** Parameters Type   */
  typedef typename Superclass::ParametersType            ParametersType;
  typedef typename Superclass::JacobianType              JacobianType;
  typedef typename Superclass::ScalarType                ScalarType;
  typedef typename Superclass::InputPointType            InputPointType;
  typedef typename Superclass::OutputPointType           OutputPointType;
  typedef typename Superclass::InputVectorType           InputVectorType;
  typedef typename Superclass::OutputVectorType          OutputVectorType;
  typedef typename Superclass::InputVnlVectorType        InputVnlVectorType;
  typedef typename Superclass::OutputVnlVectorType       OutputVnlVectorType;
  typedef typename Superclass::InputCovariantVectorType  InputCovariantVectorType;
  typedef typename Superclass::OutputCovariantVectorType OutputCovariantVectorType;
  typedef typename Superclass::MatrixType                MatrixType;
  typedef typename Superclass::InverseMatrixType         InverseMatrixType;
  typedef typename Superclass::CenterType                CenterType;
  typedef typename Superclass::OffsetType                OffsetType;
  typedef typename Superclass::TranslationType           TranslationType;

  /** Versor type. */
  typedef typename Superclass::VersorType VersorType;
  typedef typename Superclass::AxisType   AxisType;
  typedef typename Superclass::AngleType  AngleType;
  typedef          TScalar                ScaleType;

  /** Set the parameters to the IdentityTransform */
  virtual void SetIdentity(void);

  /** Directly set the rotation matrix of the transform.
   * \warning The input matrix must be orthogonal with isotropic scaling
   * to within a specified tolerance, else an exception is thrown.
   *
   * \sa MatrixOffsetTransformBase::SetMatrix() */
  virtual void SetMatrix(const MatrixType & matrix);

  /** Set the transformation from a container of parameters This is typically
   * used by optimizers.  There are 7 parameters. The first three represent the
   * versor, the next three represent the translation and the last one
   * represents the scaling factor. */
  void SetParameters(const ParametersType & parameters);

  virtual const ParametersType & GetParameters(void) const;

  /** Set/Get the value of the isotropic scaling factor */
  void SetScale(ScaleType scale);

  itkGetConstReferenceMacro(Scale, ScaleType);

  /** This method computes the Jacobian matrix of the transformation.
   * given point or vector, returning the transformed point or
   * vector. The rank of the Jacobian will also indicate if the
   * transform is invertible at this point. */
  virtual void ComputeJacobianWithRespectToParameters( const InputPointType  & p, JacobianType & jacobian) const;

protected:
  Similarity3DTransform(const MatrixType & matrix, const OutputVectorType & offset);
  Similarity3DTransform(unsigned int paramDim);
  Similarity3DTransform();
  ~Similarity3DTransform()
  {
  }

  void PrintSelf(std::ostream & os, Indent indent) const;

  /** Recomputes the matrix by calling the Superclass::ComputeMatrix() and then
   * applying the scale factor. */
  void ComputeMatrix();

  /** Computes the parameters from an input matrix. */
  void ComputeMatrixParameters();

private:
  Similarity3DTransform(const Self &); // purposely not implemented
  void operator=(const Self &);        // purposely not implemented

  ScaleType m_Scale;
}; // class Similarity3DTransform
}  // namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#include "itkSimilarity3DTransform.hxx"
#endif

#endif /* __itkSimilarity3DTransform_h */