This file is indexed.

/usr/include/ITK-4.5/itkSpatialObject.h is in libinsighttoolkit4-dev 4.5.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef __itkSpatialObject_h
#define __itkSpatialObject_h

// Disable warning for lengthy symbol names in this file only

#include "itkAffineGeometryFrame.h"
#include "itkCovariantVector.h"
#include "itkExceptionObject.h"
#include <list>
#include "itkSpatialObjectProperty.h"
#include "itkProcessObject.h"
#include "itkIndex.h"
#include "itkImageRegion.h"
#include "itkSpatialObjectTreeNode.h"

namespace itk
{
/**
 * \class SpatialObject
 * \brief Implementation of the composite pattern
 *
 * The purpose of this class is to implement the composite pattern [Design
 * Patterns, Gamma, 1995] within itk, so that it becomes easy to create an
 * environment containing objects within a scene, and to manipulate the
 * environment as a whole or any of its component objects.  An
 * object has a list of transformations to transform index coordinates
 * to the corresponding coordinates in the real world coordinate
 * system, and a list of inverse transformation to go backward.  Any
 * spatial objects can be plugged to a spatial object as children.  To
 * implement your own spatial object, you need to derive from the
 * following class, which requires the definition of just a few pure
 * virtual functions.  Examples of such functions are ValueAt(),
 * IsEvaluableAt(), and IsInside(), each of which has a meaning
 * specific to each particular object type.
 * \ingroup ITKSpatialObjects
 */

template< unsigned int VDimension >
class SpatialObjectTreeNode;

template< unsigned int VDimension = 3 >
class SpatialObject:
  public DataObject
{
public:

  typedef double ScalarType;

  itkStaticConstMacro(MaximumDepth, unsigned int, 9999999);

  /** Return the maximum depth that a tree of spatial objects can
   * have.  This provides convenient access to a static constant. */
  unsigned int GetMaximumDepth() const { return MaximumDepth; }

  typedef SpatialObject< VDimension > Self;
  typedef DataObject                  Superclass;

  typedef SmartPointer< Self >       Pointer;
  typedef SmartPointer< const Self > ConstPointer;

  typedef Point< ScalarType, VDimension > PointType;
  // Spatial Function Iterator needs the following typedef
  typedef Point< ScalarType, VDimension > InputType;
  typedef PointType *                     PointPointer;

  typedef Vector< ScalarType, VDimension >          VectorType;
  typedef CovariantVector< ScalarType, VDimension > CovariantVectorType;
  typedef VectorType *                              VectorPointer;

  typedef double *SpacingType;

  typedef CovariantVector< double, VDimension > OutputVectorType;
  typedef OutputVectorType *                    OutputVectorPointer;

  typedef ScalableAffineTransform< double, VDimension > TransformType;
  typedef typename TransformType::Pointer               TransformPointer;
  typedef const TransformType *                         TransformConstPointer;

  typedef VectorContainer< IdentifierType, PointType >  VectorContainerType;

  typedef BoundingBox< IdentifierType, VDimension, ScalarType, VectorContainerType > BoundingBoxType;
  typedef typename BoundingBoxType::Pointer                                          BoundingBoxPointer;

  typedef AffineGeometryFrame< double, VDimension > AffineGeometryFrameType;
  typedef typename AffineGeometryFrameType::Pointer AffineGeometryFramePointer;

  /** Return type for the list of children */
  typedef std::list< Pointer > ChildrenListType;
  typedef ChildrenListType *   ChildrenListPointer;

  /** Index typedef support. An index is used to access pixel values. */
  typedef Index< VDimension >                IndexType;

  /** Offset typedef support. An offset represent relative position
   * between indices. */
  typedef Offset< VDimension >                 OffsetType;
  typedef ImageRegion< VDimension >            RegionType;
  typedef Size< VDimension >                   SizeType;
  typedef SpatialObjectProperty< float >       PropertyType;
  typedef typename PropertyType::Pointer       PropertyPointer;

  typedef SpatialObjectTreeNode< VDimension > TreeNodeType;

  /** Return true if the object has a parent object. Basically, only
   *  the root object , or some isolated objects should return false. */
  virtual bool HasParent(void) const;

  /** Get the typename of the SpatialObject */
  virtual const char * GetTypeName(void) const { return m_TypeName.c_str(); }

  /** Dimension of the object.  This constant is used by functions that are
   * templated over SpatialObject type when they need compile time access
   * to the dimension of the object. */
  itkStaticConstMacro(ObjectDimension, unsigned int, VDimension);

  /** Get the dimensionality of the object */
  unsigned int GetObjectDimension(void) const { return VDimension; }

  /** Method for creation through the object factory. */
  itkNewMacro(Self);

  /** Run-time type information (and related methods). */
  itkTypeMacro(SpatialObject, DataObject);

  /** Set/Get the AffineGeometryFrame */
  itkSetObjectMacro(AffineGeometryFrame, AffineGeometryFrameType);
  itkGetModifiableObjectMacro(AffineGeometryFrame, AffineGeometryFrameType);

  /** This defines the transformation from the global coordinate frame.
   *  By setting this transform, the local transform is computed */
  void SetObjectToWorldTransform(TransformType *transform);
  itkGetModifiableObjectMacro(ObjectToWorldTransform, TransformType);

  itkGetModifiableObjectMacro(IndexToWorldTransform, TransformType);

  /** Compute the World transform when the local transform is set
   *  This function should be called each time the local transform
   *  has been modified */
  void ComputeObjectToWorldTransform(void);

  /** Compute the Local transform when the global transform is set */
  void ComputeObjectToParentTransform(void);

  /** Return the Modified time of the LocalToWorldTransform */
  unsigned long GetTransformMTime(void);

  /** Return the Modified time of the WorldToLocalTransform */
  unsigned long GetWorldTransformMTime(void);

  /** Returns the value at a point */
  virtual bool ValueAt(const PointType & point, double & value,
                       unsigned int depth = 0,
                       char *name = NULL) const;

  /** Returns true if the object can provide a "meaningful" value at
   * a point.   Often defaults to returning same answer as IsInside, but
   * certain objects influence space beyond their spatial extent,
   * e.g., an RFA Needle Spatial Object can cause a burn
   * that extends beyond the tip of the needle.
   */
  virtual bool IsEvaluableAt(const PointType & point,
                             unsigned int depth = 0,
                             char *name = NULL) const;

  /** Returns true if a point is inside the object. */
  virtual bool IsInside(const PointType & point,
                        unsigned int depth = 0,
                        char *name = NULL) const;

  /** Returns true if a point is inside the object - provided
   * to make spatial objects compatible with spatial functions
   * and conditional iterators for defining regions of interest.
   */
  bool Evaluate(const PointType & point) const
  {
    return this->IsInside(point);
  }

  /** Return the n-th order derivative value at the specified point. */
  virtual void DerivativeAt(const PointType & point,
                            short unsigned int order,
                            OutputVectorType & value,
                            unsigned int depth = 0,
                            char *name = NULL);

  /** Returns the latest modified time of the spatial object, and
   * any of its components. */
  ModifiedTimeType GetMTime(void) const;

  /** Returns the latest modified time of the spatial object, but not
   *  the modification time of the children */
  unsigned long GetObjectMTime(void) const
  {
    return Superclass::GetMTime();
  }

  /** Set the region object that defines the size and starting index
   * for the largest possible region this image could represent.  This
   * is used in determining how much memory would be needed to load an
   * entire dataset.  It is also used to determine boundary
   * conditions.
   * \sa ImageRegion, SetBufferedRegion(), SetRequestedRegion() */
  virtual void SetLargestPossibleRegion(const RegionType & region);

  /** Get the region object that defines the size and starting index
   * for the largest possible region this image could represent.  This
   * is used in determining how much memory would be needed to load an
   * entire dataset.  It is also used to determine boundary
   * conditions.
   * \sa ImageRegion, GetBufferedRegion(), GetRequestedRegion() */
  virtual const RegionType & GetLargestPossibleRegion() const
  { return m_LargestPossibleRegion; }

  /** Set the region object that defines the size and starting index
   * of the region of the image currently loaded in memory.
   * \sa ImageRegion, SetLargestPossibleRegion(), SetRequestedRegion() */
  virtual void SetBufferedRegion(const RegionType & region);

  /** Get the region object that defines the size and starting index
   * of the region of the image currently loaded in memory.
   * \sa ImageRegion, SetLargestPossibleRegion(), SetRequestedRegion() */
  virtual const RegionType & GetBufferedRegion() const
  { return m_BufferedRegion; }

  /** Set the region object that defines the size and starting index
   * for the region of the image requested (i.e., the region of the
   * image to be operated on by a filter).
   * \sa ImageRegion, SetLargestPossibleRegion(), SetBufferedRegion() */
  virtual void SetRequestedRegion(const RegionType & region);

  /** Set the requested region from this data object to match the requested
   * region of the data object passed in as a parameter.  This method
   * implements the API from DataObject. The data object parameter must be
   * castable to an ImageBase. */
  virtual void SetRequestedRegion(const DataObject *data);

  /** Get the region object that defines the size and starting index
   * for the region of the image requested (i.e., the region of the
   * image to be operated on by a filter).
   * \sa ImageRegion, SetLargestPossibleRegion(), SetBufferedRegion() */
  virtual const RegionType & GetRequestedRegion() const
  { return m_RequestedRegion; }

  /** Get the offset table.  The offset table gives increments for
   * moving from one pixel to next in the current row, column, slice,
   * etc..  This table if of size [VImageDimension+1], because its
   * values are computed progressively as: {1, N1, N1*N2,
   * N1*N2*N3,...,(N1*...*Nn)} Where the values {N1,...,Nn} are the
   * elements of the BufferedRegion::Size array.  The last element of
   * the OffsetTable is equivalent to the BufferSize.  Having a
   * [VImageDimension+1] size array, simplifies the implementation of
   * some data accessing algorithms. */
  const OffsetValueType * GetOffsetTable() const { return m_OffsetTable; }

  /** Compute an offset from the beginning of the buffer for a pixel
   * at the specified index. */
  OffsetValueType ComputeOffset(const IndexType & ind) const
  {
    // need to add bounds checking for the region/buffer?
    OffsetValueType   offset = 0;
    const IndexType & bufferedRegionIndex = m_BufferedRegion.GetIndex();

    // data is arranged as [][][][slice][row][col]
    // with Index[0] = col, Index[1] = row, Index[2] = slice
    for ( int i = VDimension - 1; i > 0; i-- )
      {
      offset += ( ind[i] - bufferedRegionIndex[i] ) * m_OffsetTable[i];
      }
    offset += ( ind[0] - bufferedRegionIndex[0] );

    return offset;
  }

  /** Compute the index of the pixel at a specified offset from the
   * beginning of the buffered region. */
  IndexType ComputeIndex(OffsetValueType offset) const
  {
    IndexType         index;
    const IndexType & bufferedRegionIndex = m_BufferedRegion.GetIndex();

    for ( int i = VDimension - 1; i > 0; i-- )
      {
      index[i] = static_cast< IndexValueType >( offset / m_OffsetTable[i] );
      offset -= ( index[i] * m_OffsetTable[i] );
      index[i] += bufferedRegionIndex[i];
      }
    index[0] = bufferedRegionIndex[0] + static_cast< IndexValueType >( offset );

    return index;
  }

  /** Copy information from the specified data set.  This method is
   * part of the pipeline execution model. By default, a ProcessObject
   * will copy meta-data from the first input to all of its
   * outputs. See ProcessObject::GenerateOutputInformation().  Each
   * subclass of DataObject is responsible for being able to copy
   * whatever meta-data it needs from from another DataObject.
   * ImageBase has more meta-data than its DataObject.  Thus, it must
   * provide its own version of CopyInformation() in order to copy the
   * LargestPossibleRegion from the input parameter. */
  virtual void CopyInformation(const DataObject *data);

  /** Update the information for this DataObject so that it can be used
   * as an output of a ProcessObject.  This method is used the pipeline
   * mechanism to propagate information and initialize the meta data
   * associated with a DataObject. This method calls its source's
   * ProcessObject::UpdateOutputInformation() which determines modified
   * times, LargestPossibleRegions, and any extra meta data like spacing,
   * origin, etc. */
  virtual void UpdateOutputInformation();

  /** Set the RequestedRegion to the LargestPossibleRegion.  This
   * forces a filter to produce all of the output in one execution
   * (i.e. not streaming) on the next call to Update(). */
  virtual void SetRequestedRegionToLargestPossibleRegion();

  /** Determine whether the RequestedRegion is outside of the
   * BufferedRegion. This method returns true if the RequestedRegion
   * is outside the BufferedRegion (true if at least one pixel is
   * outside). This is used by the pipeline mechanism to determine
   * whether a filter needs to re-execute in order to satisfy the
   * current request.  If the current RequestedRegion is already
   * inside the BufferedRegion from the previous execution (and the
   * current filter is up to date), then a given filter does not need
   * to re-execute */
  virtual bool RequestedRegionIsOutsideOfTheBufferedRegion();

  /** Verify that the RequestedRegion is within the
   * LargestPossibleRegion.  If the RequestedRegion is not within the
   * LargestPossibleRegion, then the filter cannot possible satisfy
   * the request. This method returns true if the request can be
   * satisfied and returns fails if the request cannot. This method is
   * used by PropagateRequestedRegion().  PropagateRequestedRegion()
   * throws a InvalidRequestedRegionError exception is the requested
   * region is not within the LargestPossibleRegion. */
  virtual bool VerifyRequestedRegion();

  /** Returns a pointer to the property object applied to this class. */
  PropertyType * GetProperty(void);

  const PropertyType * GetProperty(void) const { return m_Property; }

  /** Set the property applied to the object. */
  void SetProperty(PropertyType *property);

  /** Get/Set the ID */
  itkGetConstReferenceMacro(Id, int);
  itkSetMacro(Id, int);

  /** Set/Get the parent Identification number */
  itkSetMacro(ParentId, int);
  itkGetConstReferenceMacro(ParentId, int);

  /** Specify that the object has been updated */
  virtual void Update(void);

  /** Set the tree container */
  itkSetObjectMacro(TreeNode, TreeNodeType)

  /** Return a raw pointer to the node container */
  itkGetModifiableObjectMacro(TreeNode, TreeNodeType);

  /** Theses functions are just calling the AffineGeometryFrame functions */
  /** Set the spacing of the spatial object. */
  void SetSpacing(const double spacing[itkGetStaticConstMacro(ObjectDimension)])
  {
  m_AffineGeometryFrame->GetModifiableIndexToObjectTransform()->SetScale(spacing);
  this->Modified();
  }
  /** Get the spacing of the spatial object. */
  virtual const double * GetSpacing() const
  {
  return this->GetIndexToObjectTransform()->GetScale();
  }

  /** Transform points from the internal data coordinate system
   * of the object (typically the indices of the image from which
   * the object was defined) to "physical" space (which accounts
   * for the spacing, orientation, and offset of the indices)
   */
  const TransformType * GetIndexToObjectTransform(void) const;

  TransformType * GetModifiableIndexToObjectTransform(void)
    {
    return m_AffineGeometryFrame->GetModifiableIndexToObjectTransform();
    }
  TransformType * GetIndexToObjectTransform(void)
    {
    return m_AffineGeometryFrame->GetModifiableIndexToObjectTransform();
    }


  /** Transforms points from the object-specific "physical" space
   * to the "physical" space of its parent object.
   */
  void SetObjectToParentTransform(TransformType *transform);

  TransformType * GetObjectToParentTransform(void);

  const TransformType * GetObjectToParentTransform(void) const;

  /** Transforms points from the object-specific "physical" space
   * to the "physical" space of its parent object.
   */
  TransformType * GetObjectToNodeTransform(void);

  const TransformType * GetObjectToNodeTransform(void) const;

  /** Theses functions are just calling the itkSpatialObjectTreeNode
   *  functions */

  /** Add an object to the list of children. */
  void AddSpatialObject(Self *pointer);

  /** Remove the object passed as arguments from the list of
   * children. May this function
   * should return a false value if the object to remove is
   * not found in the list. */
  void RemoveSpatialObject(Self *object);

  /** Return a pointer to the parent object in the hierarchy tree */
  virtual const Self * GetParent(void) const;

  /** Return a pointer to the parent object in the hierarchy tree */
  virtual Self * GetParent(void);

  /** Returns a list of pointer to the children affiliated to this object.
   * A depth of 0 returns the immediate childred. A depth of 1 returns the
   * children and those children's children.
   * \warning User is responsible for freeing the list, but not the elements of
   * the list. */
  virtual ChildrenListType * GetChildren(unsigned int depth = 0,
                                         char *name = NULL) const;

  /** Returns the number of children currently assigned to the object. */
  unsigned int GetNumberOfChildren(unsigned int depth = 0,
                                   char *name = NULL) const;

  /** Set the list of pointers to children to the list passed as argument. */
  void SetChildren(ChildrenListType & children);

  /** Clear the spatial object by deleting all lists of children
   * and subchildren */
  virtual void Clear(void);

  /**
   * Compute an axis-aligned bounding box for an object and its selected
   * children, down to a specified depth.  After computation, the
   * resulting bounding box is stored in this->m_Bounds.
   *
   * By default, the bounding box children depth is maximum, meaning that
   * the bounding box for the object and all its recursive children is
   * computed.
   * This depth can be set (before calling ComputeBoundingBox) using
   * SetBoundingBoxChildrenDepth().
   *
   * By calling SetBoundingBoxChildrenName(), it is possible to
   * restrict the bounding box computation to objects of a specified
   * type or family of types.  The spatial objects included in the
   * computation are those whose typenames share, as their initial
   * substring, the string specified via SetBoundingBoxChildrenName().
   * The root spatial object (on which the method is called) is not
   * treated specially.  If its typename does not match the bounding
   * box children name, then it is not included in the bounding box
   * computation, but its descendents that match the string are
   * included.
   */
  virtual bool ComputeBoundingBox() const;

  virtual bool ComputeLocalBoundingBox() const
  {
    std::cerr << "SpatialObject::ComputeLocalBoundingBox Not Implemented!"
              << std::endl;
    return false;
  }

  /** Get the bounding box of the object.
   *  This function calls ComputeBoundingBox() */
  virtual BoundingBoxType * GetBoundingBox() const;

  /** Set/Get the depth at which the bounding box is computed */
  itkSetMacro(BoundingBoxChildrenDepth, unsigned int);
  itkGetConstReferenceMacro(BoundingBoxChildrenDepth, unsigned int);

  /** Set/Get the name of the children to consider when computing the
   *  bounding box */
  itkSetMacro(BoundingBoxChildrenName, std::string);
  itkGetConstReferenceMacro(BoundingBoxChildrenName, std::string);

  /** Set the pointer to the parent object in the tree hierarchy
   *  used for the spatial object patter. */
  void SetParent(Self *parent);

  /** These function are just calling the node container transforms */
  void SetNodeToParentNodeTransform(TransformType *transform);

  TransformType * GetNodeToParentNodeTransform(void);

  const TransformType * GetNodeToParentNodeTransform(void) const;

  /** Set/Get the default inside value (ValueAt()) of the object.
   *  Default is 1.0 */
  itkSetMacro(DefaultInsideValue, double);
  itkGetConstMacro(DefaultInsideValue, double);

  /** Set/Get the default outside value (ValueAt()) of the object.
   *  Default is 0.0 */
  itkSetMacro(DefaultOutsideValue, double);
  itkGetConstMacro(DefaultOutsideValue, double);

  /** Return the type of the spatial object as a string
   *  This is used by the SpatialObjectFactory */
  virtual std::string GetSpatialObjectTypeAsString() const;

protected:

  /** Constructor. */
  SpatialObject();

  /** Destructor. */
  virtual ~SpatialObject();

  virtual void PrintSelf(std::ostream & os, Indent indent) const;

  /** Calculate the offsets needed to move from one pixel to the next
   * along a row, column, slice, volume, etc. These offsets are based
   * on the size of the BufferedRegion. This should be called after
   * the BufferedRegion is set. */
  void ComputeOffsetTable();

  itkSetMacro(Dimension, unsigned int);
  itkGetConstReferenceMacro(Dimension, unsigned int)
  itkSetMacro(TypeName, std::string);
  itkGetModifiableObjectMacro(Bounds, BoundingBoxType);
  itkGetModifiableObjectMacro(InternalInverseTransform, TransformType);

  /** This convenience method take the IndexToWorldTransform, and
   * if it can compute its inverse, then stores the result in the
   * InternalInverse member variable, that can be later accessed
   * with the method GetInternalInverseTransform(). This method is
   * not exposed to users, it is only intended to be called internally
   * by derived classes. */
  bool SetInternalInverseTransformToWorldToIndexTransform() const;

private:

  SpatialObject(const Self &);  //purposely not implemented
  void operator=(const Self &); //purposely not implemented

  BoundingBoxPointer       m_Bounds;
  mutable ModifiedTimeType m_BoundsMTime;

  TransformPointer m_ObjectToParentTransform;
  TransformPointer m_ObjectToWorldTransform;
  TransformPointer m_IndexToWorldTransform;

  /** Type of spatial object */
  std::string m_TypeName;

  unsigned int m_Dimension;

  OffsetValueType m_OffsetTable[3 + 1];

  RegionType m_LargestPossibleRegion;
  RegionType m_RequestedRegion;
  RegionType m_BufferedRegion;

  std::string     m_BoundingBoxChildrenName;
  unsigned int    m_BoundingBoxChildrenDepth;
  PropertyPointer m_Property;

  /** Object Identification Number */
  int m_Id;
  int m_ParentId;

  /** Pointer to the tree container */
  typename TreeNodeType::Pointer m_TreeNode;

  /** Pointer to the AffineGeometryFrame */
  AffineGeometryFramePointer m_AffineGeometryFrame;

  /** We keep an internal list of smart pointers to the immediate children
   *  This avoid the deletion of a child */
  ChildrenListType m_InternalChildrenList;

  /** We create an inverse transform pointer since it take time to create
   *  it each time to get the inverse transform in the IsInside() method */
  TransformPointer m_InternalInverseTransform;

  /** Default inside value for the ValueAt() */
  double m_DefaultInsideValue;

  /** Default outside value for the ValueAt() */
  double m_DefaultOutsideValue;
};
} // end of namespace itk

#if !defined( CABLE_CONFIGURATION )
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkSpatialObject.hxx"
#endif
#endif

#endif // __itkSpatialObject_h