/usr/include/ITK-4.5/itkSphereMeshSource.hxx is in libinsighttoolkit4-dev 4.5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 | /*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef __itkSphereMeshSource_hxx
#define __itkSphereMeshSource_hxx
#include "itkIntTypes.h"
#include "itkSphereMeshSource.h"
namespace itk
{
/**
*
*/
template< typename TOutputMesh >
SphereMeshSource< TOutputMesh >
::SphereMeshSource()
{
/**
* Create the output
*/
typename TOutputMesh::Pointer output = TOutputMesh::New();
this->ProcessObject::SetNumberOfRequiredOutputs(1);
this->ProcessObject::SetNthOutput( 0, output.GetPointer() );
m_Squareness1 = 1.0;
m_Squareness2 = 1.0;
m_Center.Fill(0);
m_Scale.Fill(1);
m_ResolutionX = 4;
m_ResolutionY = 4;
}
/*
*
*/
template< typename TOutputMesh >
void
SphereMeshSource< TOutputMesh >
::GenerateData()
{
IdentifierType i, j, jn, p, numpts;
double ustep, vstep, ubeg, vbeg, u, v;
int signu, signv;
// calculate the number os cells and points
numpts = m_ResolutionX * m_ResolutionY + 2;
// calculate the steps using resolution
ustep = vnl_math::pi / ( m_ResolutionX + 1 );
vstep = 2.0 * vnl_math::pi / m_ResolutionY;
ubeg = ( -vnl_math::pi / 2.0 ) + ustep;
vbeg = -vnl_math::pi;
///////////////////////////////////////////////////////////////////////////
// nodes allocation
// the temporary container of nodes' connectness
typename OutputMeshType::PointIdentifier tripoints[3] = { 0, 1, 2 };
// memory allocation for nodes
typename OutputMeshType::Pointer outputMesh = this->GetOutput();
outputMesh->GetPoints()->Reserve(numpts);
outputMesh->SetCellsAllocationMethod(OutputMeshType::CellsAllocatedDynamicallyCellByCell);
PointsContainerPointer myPoints = outputMesh->GetPoints();
typename PointsContainer::Iterator point = myPoints->Begin();
OPointType p1;
// calculate all regular nodes
while ( point != myPoints->End() )
{
for ( u = ubeg, i = 0; i < m_ResolutionX; u += ustep, i++ )
{
for ( v = vbeg, j = 0; j < m_ResolutionY; v += vstep, j++ )
{
if ( vcl_cos(u) > 0 )
{
signu = 1;
}
else
{
signu = -1;
}
if ( vcl_cos(v) > 0 )
{
signv = 1;
}
else
{
signv = -1;
}
p1[0] = m_Scale[0] * signu * ( vcl_pow( (float)( vcl_fabs( vcl_cos(u) ) ), (float)m_Squareness1 ) ) * signv
* ( vcl_pow( (float)( vcl_fabs( vcl_cos(v) ) ), (float)m_Squareness2 ) ) + m_Center[0];
if ( vcl_sin(v) > 0 )
{
signv = 1;
}
else
{
signv = -1;
}
p1[1] = m_Scale[1] * signu * ( vcl_pow( (float)( vcl_fabs( vcl_cos(u) ) ), (float)m_Squareness1 ) ) * signv
* ( vcl_pow( (float)( vcl_fabs( vcl_sin(v) ) ), (float)m_Squareness2 ) ) + m_Center[1];
if ( vcl_sin(u) > 0 )
{
signu = 1;
}
else
{
signu = -1;
}
p1[2] = m_Scale[2] * signu * ( vcl_pow( (float)( vcl_fabs( vcl_sin(u) ) ), (float)m_Squareness1 ) )
+ m_Center[2];
point.Value() = p1;
++point;
}
}
// calculate the south pole node
p1[0] = ( m_Scale[0] * ( vcl_pow( (float)( vcl_fabs( vcl_cos(-vnl_math::pi / 2) ) ), 1.0f ) )
* ( vcl_pow( (float)( vcl_fabs( vcl_cos(0.0) ) ), 1.0f ) ) + m_Center[0] );
p1[1] = ( m_Scale[1] * ( vcl_pow( (float)( vcl_fabs( vcl_cos(-vnl_math::pi / 2) ) ), 1.0f ) )
* ( vcl_pow( (float)( vcl_fabs( vcl_sin(0.0) ) ), 1.0f ) ) + m_Center[1] );
p1[2] = ( m_Scale[2] * -1 * ( vcl_pow( (float)( vcl_fabs( vcl_sin(-vnl_math::pi / 2) ) ), 1.0f ) )
+ m_Center[2] );
point.Value() = p1;
++point;
// calculate the north pole node
p1[0] = ( m_Scale[0] * ( vcl_pow( (float)( vcl_fabs( vcl_cos(vnl_math::pi / 2) ) ), 1.0f ) )
* ( vcl_pow(vcl_fabs( vcl_cos(0.0) ), 1.0) ) + m_Center[0] );
p1[1] = ( m_Scale[1] * ( vcl_pow( (float)( vcl_fabs( vcl_cos(vnl_math::pi / 2) ) ), 1.0f ) )
* ( vcl_pow(vcl_fabs( vcl_sin(0.0) ), 1.0) ) + m_Center[1] );
p1[2] = ( m_Scale[2] * ( vcl_pow( (float)( vcl_fabs( vcl_sin(vnl_math::pi / 2) ) ), 1.0f ) )
+ m_Center[2] );
point.Value() = p1;
++point;
}
///////////////////////////////////////////////////////////////////////////
// cells allocation
p = 0;
// store all regular cells
CellAutoPointer testCell;
for ( unsigned int ii = 0; ii + 1 < m_ResolutionX; ii++ )
{
for ( unsigned int jj = 0; jj < m_ResolutionY; jj++ )
{
jn = ( jj + 1 ) % m_ResolutionY;
tripoints[0] = ii * m_ResolutionY + jj;
tripoints[1] = tripoints[0] - jj + jn;
tripoints[2] = tripoints[0] + m_ResolutionY;
testCell.TakeOwnership(new TriCellType);
testCell->SetPointIds(tripoints);
outputMesh->SetCell(p, testCell);
outputMesh->SetCellData(p, (OPixelType)3.0);
p++;
testCell.TakeOwnership(new TriCellType);
tripoints[0] = tripoints[1];
tripoints[1] = tripoints[0] + m_ResolutionY;
testCell->SetPointIds(tripoints);
outputMesh->SetCell(p, testCell);
outputMesh->SetCellData(p, (OPixelType)3.0);
p++;
}
}
// store cells containing the south pole nodes
for ( unsigned int jj = 0; jj < m_ResolutionY; jj++ )
{
jn = ( jj + 1 ) % m_ResolutionY;
tripoints[0] = numpts - 2;
tripoints[1] = jn;
tripoints[2] = jj;
testCell.TakeOwnership(new TriCellType);
testCell->SetPointIds(tripoints);
outputMesh->SetCell(p, testCell);
outputMesh->SetCellData(p, (OPixelType)1.0);
p++;
}
// store cells containing the north pole nodes
for ( unsigned int jj = 0; jj < m_ResolutionY; jj++ )
{
jn = ( jj + 1 ) % m_ResolutionY;
tripoints[2] = ( m_ResolutionX - 1 ) * m_ResolutionY + jj;
tripoints[1] = numpts - 1;
tripoints[0] = tripoints[2] - jj + jn;
testCell.TakeOwnership(new TriCellType);
testCell->SetPointIds(tripoints);
outputMesh->SetCell(p, testCell);
outputMesh->SetCellData(p, (OPixelType)2.0);
p++;
}
}
template< typename TOutputMesh >
void
SphereMeshSource< TOutputMesh >
::PrintSelf(std::ostream & os, Indent indent) const
{
Superclass::PrintSelf(os, indent);
os << indent << "Center: " << m_Center << std::endl;
os << indent << "Scale: " << m_Scale << std::endl;
os << indent << "ResolutionX: " << m_ResolutionX << std::endl;
os << indent << "ResolutionX: " << m_ResolutionY << std::endl;
os << indent << "Squareness1: " << m_Squareness1 << std::endl;
os << indent << "Squareness2: " << m_Squareness2 << std::endl;
}
} // end namespace itk
#endif
|