/usr/include/ITK-4.5/itkSymmetricSecondRankTensor.hxx is in libinsighttoolkit4-dev 4.5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 | /*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef __itkSymmetricSecondRankTensor_hxx
#define __itkSymmetricSecondRankTensor_hxx
#include "itkNumericTraitsTensorPixel.h"
namespace itk
{
/**
* Assignment Operator from a scalar constant
*/
template< typename T, unsigned int NDimension >
SymmetricSecondRankTensor< T, NDimension > &
SymmetricSecondRankTensor< T, NDimension >
::operator=(const ComponentType & r)
{
BaseArray::operator=(&r);
return *this;
}
/**
* Assigment from a plain array
*/
template< typename T, unsigned int NDimension >
SymmetricSecondRankTensor< T, NDimension > &
SymmetricSecondRankTensor< T, NDimension >
::operator=(const ComponentArrayType r)
{
BaseArray::operator=(r);
return *this;
}
/**
* Returns a temporary copy of a vector
*/
template< typename T, unsigned int NDimension >
SymmetricSecondRankTensor< T, NDimension >
SymmetricSecondRankTensor< T, NDimension >
::operator+(const Self & r) const
{
Self result;
for ( unsigned int i = 0; i < InternalDimension; i++ )
{
result[i] = ( *this )[i] + r[i];
}
return result;
}
/**
* Returns a temporary copy of a vector
*/
template< typename T, unsigned int NDimension >
SymmetricSecondRankTensor< T, NDimension >
SymmetricSecondRankTensor< T, NDimension >
::operator-(const Self & r) const
{
Self result;
for ( unsigned int i = 0; i < InternalDimension; i++ )
{
result[i] = ( *this )[i] - r[i];
}
return result;
}
/**
* Performs addition in place
*/
template< typename T, unsigned int NDimension >
const SymmetricSecondRankTensor< T, NDimension > &
SymmetricSecondRankTensor< T, NDimension >
::operator+=(const Self & r)
{
for ( unsigned int i = 0; i < InternalDimension; i++ )
{
( *this )[i] += r[i];
}
return *this;
}
/**
* Performs subtraction in place
*/
template< typename T, unsigned int NDimension >
const SymmetricSecondRankTensor< T, NDimension > &
SymmetricSecondRankTensor< T, NDimension >
::operator-=(const Self & r)
{
for ( unsigned int i = 0; i < InternalDimension; i++ )
{
( *this )[i] -= r[i];
}
return *this;
}
/**
* Performs multiplication by a scalar, in place
*/
template< typename T, unsigned int NDimension >
const SymmetricSecondRankTensor< T, NDimension > &
SymmetricSecondRankTensor< T, NDimension >
::operator*=(const RealValueType & r)
{
for ( unsigned int i = 0; i < InternalDimension; i++ )
{
( *this )[i] *= r;
}
return *this;
}
/**
* Performs division by a scalar, in place
*/
template< typename T, unsigned int NDimension >
const SymmetricSecondRankTensor< T, NDimension > &
SymmetricSecondRankTensor< T, NDimension >
::operator/=(const RealValueType & r)
{
for ( unsigned int i = 0; i < InternalDimension; i++ )
{
( *this )[i] /= r;
}
return *this;
}
/**
* Performs multiplication with a scalar
*/
template< typename T, unsigned int NDimension >
SymmetricSecondRankTensor< T, NDimension >
SymmetricSecondRankTensor< T, NDimension >
::operator*(const RealValueType & r) const
{
Self result;
for ( unsigned int i = 0; i < InternalDimension; i++ )
{
result[i] = ( *this )[i] * r;
}
return result;
}
/**
* Performs division by a scalar
*/
template< typename T, unsigned int NDimension >
SymmetricSecondRankTensor< T, NDimension >
SymmetricSecondRankTensor< T, NDimension >
::operator/(const RealValueType & r) const
{
Self result;
for ( unsigned int i = 0; i < InternalDimension; i++ )
{
result[i] = ( *this )[i] / r;
}
return result;
}
/**
* Matrix notation access to elements
*/
template< typename T, unsigned int NDimension >
const typename SymmetricSecondRankTensor< T, NDimension >::ValueType &
SymmetricSecondRankTensor< T, NDimension >
::operator()(unsigned int row, unsigned int col) const
{
unsigned int k;
if ( row < col )
{
k = row * Dimension + col - row * ( row + 1 ) / 2;
}
else
{
k = col * Dimension + row - col * ( col + 1 ) / 2;
}
if ( k >= InternalDimension )
{
k = 0;
}
return ( *this )[k];
}
/**
* Matrix notation access to elements
*/
template< typename T, unsigned int NDimension >
typename SymmetricSecondRankTensor< T, NDimension >::ValueType &
SymmetricSecondRankTensor< T, NDimension >
::operator()(unsigned int row, unsigned int col)
{
unsigned int k;
if ( row < col )
{
k = row * Dimension + col - row * ( row + 1 ) / 2;
}
else
{
k = col * Dimension + row - col * ( col + 1 ) / 2;
}
if ( k >= InternalDimension )
{
k = 0;
}
return ( *this )[k];
}
/**
* Set the Tensor to an Identity.
* Set ones in the diagonal and zeroes every where else.
*/
template< typename T, unsigned int NDimension >
void
SymmetricSecondRankTensor< T, NDimension >
::SetIdentity()
{
this->Fill(NumericTraits< T >::Zero);
for ( unsigned int i = 0; i < Dimension; i++ )
{
( *this )( i, i ) = NumericTraits< T >::One;
}
}
/**
* Get the Trace
*/
template< typename T, unsigned int NDimension >
typename SymmetricSecondRankTensor< T, NDimension >::AccumulateValueType
SymmetricSecondRankTensor< T, NDimension >
::GetTrace() const
{
AccumulateValueType trace = NumericTraits< AccumulateValueType >::Zero;
unsigned int k = 0;
for ( unsigned int i = 0; i < Dimension; i++ )
{
trace += ( *this )[k];
k += ( Dimension - i );
}
return trace;
}
/**
* Compute Eigen Values
*/
template< typename T, unsigned int NDimension >
void
SymmetricSecondRankTensor< T, NDimension >
::ComputeEigenValues(EigenValuesArrayType & eigenValues) const
{
SymmetricEigenAnalysisType symmetricEigenSystem = SymmetricEigenAnalysisType(Dimension);
MatrixType tensorMatrix;
for ( unsigned int row = 0; row < Dimension; row++ )
{
for ( unsigned int col = 0; col < Dimension; col++ )
{
tensorMatrix[row][col] = ( *this )( row, col );
}
}
symmetricEigenSystem.ComputeEigenValues(tensorMatrix, eigenValues);
}
/**
* Compute Eigen analysis, it returns an array with eigen values
* and a Matrix with eigen vectors
*/
template< typename T, unsigned int NDimension >
void
SymmetricSecondRankTensor< T, NDimension >
::ComputeEigenAnalysis(EigenValuesArrayType & eigenValues,
EigenVectorsMatrixType & eigenVectors) const
{
SymmetricEigenAnalysisType symmetricEigenSystem = SymmetricEigenAnalysisType(Dimension);
MatrixType tensorMatrix;
for ( unsigned int row = 0; row < Dimension; row++ )
{
for ( unsigned int col = 0; col < Dimension; col++ )
{
tensorMatrix[row][col] = ( *this )( row, col );
}
}
symmetricEigenSystem.ComputeEigenValuesAndVectors(
tensorMatrix, eigenValues, eigenVectors);
}
/**
* Set the Tensor to a Rotated version of the current tensor.
* matrix * self * Transpose(matrix)
*
*/
template<typename T,unsigned int NDimension>
template <typename TMatrixValueType>
SymmetricSecondRankTensor<T,NDimension>
SymmetricSecondRankTensor<T,NDimension>
::Rotate( const Matrix<TMatrixValueType, NDimension, NDimension> & m ) const
{
Self result;
typedef Matrix<double, NDimension, NDimension> RotationMatrixType;
RotationMatrixType SCT; //self * Transpose(m)
for(unsigned int r=0; r<NDimension; r++)
{
for(unsigned int c=0; c<NDimension; c++)
{
double sum = 0.0;
for(unsigned int t=0; t<NDimension; t++)
{
sum += (*this)(r,t) * m(c,t);
}
SCT(r,c) = sum;
}
}
//self = m * sct;
for(unsigned int r=0; r<NDimension; r++)
{
for(unsigned int c=0; c<NDimension; c++)
{
double sum = 0.0;
for(unsigned int t=0; t<NDimension; t++)
{
sum += m(r,t) * SCT(t,c);
}
(result)(r,c) = static_cast<T>( sum );
}
}
return result;
}
/**
* Pre-multiply the Tensor by a Matrix
*/
template< typename T, unsigned int NDimension >
typename SymmetricSecondRankTensor< T, NDimension >::MatrixType
SymmetricSecondRankTensor< T, NDimension >
::PreMultiply(const MatrixType & m) const
{
MatrixType result;
typedef typename NumericTraits< T >::AccumulateType AccumulateType;
for ( unsigned int r = 0; r < NDimension; r++ )
{
for ( unsigned int c = 0; c < NDimension; c++ )
{
AccumulateType sum = NumericTraits< AccumulateType >::ZeroValue();
for ( unsigned int t = 0; t < NDimension; t++ )
{
sum += m(r, t) * ( *this )( t, c );
}
result(r, c) = static_cast< T >( sum );
}
}
return result;
}
/**
* Post-multiply the Tensor by a Matrix
*/
template< typename T, unsigned int NDimension >
typename SymmetricSecondRankTensor< T, NDimension >::MatrixType
SymmetricSecondRankTensor< T, NDimension >
::PostMultiply(const MatrixType & m) const
{
MatrixType result;
typedef typename NumericTraits< T >::AccumulateType AccumulateType;
for ( unsigned int r = 0; r < NDimension; r++ )
{
for ( unsigned int c = 0; c < NDimension; c++ )
{
AccumulateType sum = NumericTraits< AccumulateType >::ZeroValue();
for ( unsigned int t = 0; t < NDimension; t++ )
{
sum += ( *this )( r, t ) * m(t, c);
}
result(r, c) = static_cast< T >( sum );
}
}
return result;
}
/**
* Print content to an ostream
*/
template< typename T, unsigned int NDimension >
std::ostream &
operator<<(std::ostream & os, const SymmetricSecondRankTensor< T, NDimension > & c)
{
for ( unsigned int i = 0; i < c.GetNumberOfComponents(); i++ )
{
os << static_cast< typename NumericTraits< T >::PrintType >( c[i] ) << " ";
}
return os;
}
/**
* Read content from an istream
*/
template< typename T, unsigned int NDimension >
std::istream &
operator>>(std::istream & is, SymmetricSecondRankTensor< T, NDimension > & dt)
{
for ( unsigned int i = 0; i < dt.GetNumberOfComponents(); i++ )
{
is >> dt[i];
}
return is;
}
} // end namespace itk
#endif
|