This file is indexed.

/usr/include/ITK-4.5/itkTrainingFunctionBase.h is in libinsighttoolkit4-dev 4.5.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef __itkTrainingFunctionBase_h
#define __itkTrainingFunctionBase_h

#include <iostream>
#include "itkLightProcessObject.h"
#include "itkNeuralNetworkObject.h"
#include "itkSquaredDifferenceErrorFunction.h"
#include "itkMeanSquaredErrorFunction.h"
namespace itk
{
namespace Statistics
{
/** \class TrainingFunctionBase
 * \brief This is the itkTrainingFunctionBase class.
 *
 * \ingroup ITKNeuralNetworks
 */

template<typename TSample, typename TTargetVector, typename ScalarType>
class TrainingFunctionBase : public LightProcessObject
{
public:
  typedef TrainingFunctionBase     Self;
  typedef LightProcessObject       Superclass;
  typedef SmartPointer<Self>       Pointer;
  typedef SmartPointer<const Self> ConstPointer;

  /** Method for creation through the object factory. */
  itkTypeMacro(TrainingFunctionBase, LightProcessObject);

  /** Method for creation through the object factory. */
  itkNewMacro(Self);

  typedef ScalarType                                    ValueType;
  typedef typename TSample::MeasurementVectorType       VectorType;
  typedef typename TTargetVector::MeasurementVectorType OutputVectorType;
  typedef Array<ValueType>                              InternalVectorType;

  typedef std::vector<VectorType>                           InputSampleVectorType;
  typedef std::vector<OutputVectorType>                     OutputSampleVectorType;
  typedef NeuralNetworkObject<VectorType, OutputVectorType> NetworkType;
  typedef ErrorFunctionBase<InternalVectorType, ScalarType> PerformanceFunctionType;
  typedef SquaredDifferenceErrorFunction<InternalVectorType, ScalarType>
                                                            DefaultPerformanceType;

  void SetTrainingSamples(TSample* samples);
  void SetTargetValues(TTargetVector* targets);
  void SetLearningRate(ValueType);

  ValueType GetLearningRate();

  itkSetMacro(Iterations, SizeValueType);
  itkGetConstReferenceMacro(Iterations, SizeValueType);

  void SetPerformanceFunction(PerformanceFunctionType* f);

  virtual void Train(NetworkType* itkNotUsed(net), TSample* itkNotUsed(samples), TTargetVector* itkNotUsed(targets))
    {
    // not implemented
    };

  inline VectorType
  defaultconverter(typename TSample::MeasurementVectorType v)
    {
    VectorType temp;
    for (unsigned int i = 0; i < v.Size(); i++)
      {
      temp[i] = static_cast<ScalarType>(v[i]);
      }
    return temp;
    }

  inline OutputVectorType
  targetconverter(typename TTargetVector::MeasurementVectorType v)
    {
    OutputVectorType temp;

    for (unsigned int i = 0; i < v.Size(); i++)
      {
      temp[i] = static_cast<ScalarType>(v[i]);
      }
    return temp;
    }

protected:

  TrainingFunctionBase();
  ~TrainingFunctionBase(){};

  /** Method to print the object. */
  virtual void PrintSelf( std::ostream& os, Indent indent ) const;

  TSample*                m_TrainingSamples;// original samples
  TTargetVector*          m_SampleTargets;  // original samples
  InputSampleVectorType   m_InputSamples;   // itk::vectors
  OutputSampleVectorType  m_Targets;        // itk::vectors
  SizeValueType           m_Iterations;
  ValueType               m_LearningRate;

  typename PerformanceFunctionType::Pointer m_PerformanceFunction;
};

} // end namespace Statistics
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkTrainingFunctionBase.hxx"
#endif

#endif