This file is indexed.

/usr/include/ITK-4.5/itkTwoHiddenLayerBackPropagationNeuralNetwork.hxx is in libinsighttoolkit4-dev 4.5.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef __itkTwoHiddenLayerBackPropagationNeuralNetwork_hxx
#define __itkTwoHiddenLayerBackPropagationNeuralNetwork_hxx

#include "itkTwoHiddenLayerBackPropagationNeuralNetwork.h"

namespace itk
{
namespace Statistics
{

/** Constructor */
template<typename TMeasurementVector, typename TTargetVector>
TwoHiddenLayerBackPropagationNeuralNetwork<TMeasurementVector,TTargetVector>
::TwoHiddenLayerBackPropagationNeuralNetwork()
{
  typedef IdentityTransferFunction<ValueType> tfType1;
  m_InputTransferFunction = tfType1::New();

  typedef TanSigmoidTransferFunction<ValueType> tfType2;
  m_FirstHiddenTransferFunction = tfType2::New();
  m_SecondHiddenTransferFunction = tfType2::New();
  typedef TanSigmoidTransferFunction<ValueType> tfType3;
  m_OutputTransferFunction= tfType3::New();

  typedef SumInputFunction<ValueType*, ValueType> InputFcnType;
  m_InputFunction=InputFcnType::New();

  m_NumOfInputNodes = 0;
  m_NumOfFirstHiddenNodes = 0;
  m_NumOfSecondHiddenNodes = 0;
  m_NumOfOutputNodes = 0;
  m_FirstHiddenLayerBias  = 1.0;
  m_SecondHiddenLayerBias  = 1.0;
  m_OutputLayerBias  = 1.0;
}

/** Intialize */
template<typename TMeasurementVector, typename TTargetVector>
void
TwoHiddenLayerBackPropagationNeuralNetwork<TMeasurementVector,TTargetVector>
::Initialize()
{
  if(m_NumOfInputNodes == 0 )
    {
    itkExceptionMacro("ERROR:  Number of Input Nodes must be greater than 0!");
    }
  if(m_NumOfFirstHiddenNodes == 0 )
    {
    itkExceptionMacro("ERROR:  Number of Hidden Layer 1 Nodes must be greater than 0!");
    }
  if(m_NumOfSecondHiddenNodes == 0 )
    {
    itkExceptionMacro("ERROR:  Number of Hidden Layer 2 Nodes must be greater than 0!");
    }
  if(m_NumOfOutputNodes == 0 )
    {
    itkExceptionMacro("ERROR:  Number of Output Nodes must be greater than 0!");
    }

  //Define weights of Nodes
  typename LearningLayerType::WeightSetType::Pointer InputLayerOutputWeights = LearningLayerType::WeightSetType::New();
  InputLayerOutputWeights->SetNumberOfInputNodes(m_NumOfInputNodes);
  InputLayerOutputWeights->SetNumberOfOutputNodes(m_NumOfFirstHiddenNodes);
  InputLayerOutputWeights->SetCompleteConnectivity();
  InputLayerOutputWeights->SetBias(m_FirstHiddenLayerBias);
  InputLayerOutputWeights->SetRange(1.0);  //0.5
  InputLayerOutputWeights->Initialize();

  typename LearningLayerType::WeightSetType::Pointer HiddenLayer1OutputWeights = LearningLayerType::WeightSetType::New();
  HiddenLayer1OutputWeights->SetNumberOfInputNodes(m_NumOfFirstHiddenNodes);
  HiddenLayer1OutputWeights->SetNumberOfOutputNodes(m_NumOfSecondHiddenNodes);
  HiddenLayer1OutputWeights->SetCompleteConnectivity();
  HiddenLayer1OutputWeights->SetBias(m_SecondHiddenLayerBias);
  HiddenLayer1OutputWeights->SetRange(1.0); //0.5
  HiddenLayer1OutputWeights->Initialize();

  typename LearningLayerType::WeightSetType::Pointer HiddenLayer2OutputWeights = LearningLayerType::WeightSetType::New();
  HiddenLayer2OutputWeights->SetNumberOfInputNodes(m_NumOfSecondHiddenNodes);
  HiddenLayer2OutputWeights->SetNumberOfOutputNodes(m_NumOfOutputNodes);
  HiddenLayer2OutputWeights->SetCompleteConnectivity();
  HiddenLayer2OutputWeights->SetBias(m_OutputLayerBias);
  HiddenLayer2OutputWeights->SetRange(1.0); //0.5
  HiddenLayer2OutputWeights->Initialize();

  //Define layers
  typename LearningLayerType::Pointer inputlayer = LearningLayerType::New();
  inputlayer->SetLayerTypeCode(LearningLayerType::INPUTLAYER);
  inputlayer->SetNumberOfNodes(m_NumOfInputNodes);
  inputlayer->SetTransferFunction(m_InputTransferFunction);
  inputlayer->SetNodeInputFunction(m_InputFunction);

  typename LearningLayerType::Pointer hiddenlayer1 = LearningLayerType::New();
  hiddenlayer1->SetLayerTypeCode(LearningLayerType::HIDDENLAYER);
  hiddenlayer1->SetNumberOfNodes(m_NumOfFirstHiddenNodes);
  hiddenlayer1->SetTransferFunction(m_FirstHiddenTransferFunction);
  hiddenlayer1->SetNodeInputFunction(m_InputFunction);

  typename LearningLayerType::Pointer hiddenlayer2 = LearningLayerType::New();
  hiddenlayer2->SetLayerTypeCode(LearningLayerType::HIDDENLAYER);
  hiddenlayer2->SetNumberOfNodes(m_NumOfSecondHiddenNodes);
  hiddenlayer2->SetTransferFunction(m_SecondHiddenTransferFunction);
  hiddenlayer2->SetNodeInputFunction(m_InputFunction);

  typename LearningLayerType::Pointer outputlayer = LearningLayerType::New();
  outputlayer->SetLayerTypeCode(LearningLayerType::OUTPUTLAYER);
  outputlayer->SetNumberOfNodes(m_NumOfOutputNodes);
  outputlayer->SetTransferFunction(m_OutputTransferFunction);
  outputlayer->SetNodeInputFunction(m_InputFunction);

  Superclass::AddLayer(inputlayer);
  Superclass::AddLayer(hiddenlayer1);
  Superclass::AddLayer(hiddenlayer2);
  Superclass::AddLayer(outputlayer);

  Superclass::AddWeightSet(InputLayerOutputWeights);
  Superclass::AddWeightSet(HiddenLayer1OutputWeights);
  Superclass::AddWeightSet(HiddenLayer2OutputWeights);

  //HACK:  NOTE:  You can not set the WeightSets until after the layers are added to the network because
  //       the LayerId's must have been set prior to the Weights being added to the layers.
  //       The ordering of putting together the networks is crucial.  Layers must be added to network
  //       prior to weights being added to layers.
  inputlayer->SetOutputWeightSet(InputLayerOutputWeights);
  hiddenlayer1->SetInputWeightSet(InputLayerOutputWeights);
  hiddenlayer1->SetOutputWeightSet(HiddenLayer1OutputWeights);
  hiddenlayer2->SetInputWeightSet(HiddenLayer1OutputWeights);
  hiddenlayer2->SetOutputWeightSet(HiddenLayer2OutputWeights);
  outputlayer->SetInputWeightSet(HiddenLayer2OutputWeights);
}


template<typename TMeasurementVector, typename TTargetVector>
void
TwoHiddenLayerBackPropagationNeuralNetwork<TMeasurementVector,TTargetVector>
::SetInputTransferFunction(TransferFunctionInterfaceType* f)
{
  m_InputTransferFunction=f;
}

template<typename TMeasurementVector, typename TTargetVector>
void
TwoHiddenLayerBackPropagationNeuralNetwork<TMeasurementVector,TTargetVector>
::SetFirstHiddenTransferFunction(TransferFunctionInterfaceType* f)
{
  m_FirstHiddenTransferFunction=f;
}

template<typename TMeasurementVector, typename TTargetVector>
void
TwoHiddenLayerBackPropagationNeuralNetwork<TMeasurementVector,TTargetVector>
::SetOutputTransferFunction(TransferFunctionInterfaceType* f)
{
  m_OutputTransferFunction=f;
}

template<typename TMeasurementVector, typename TTargetVector>
void
TwoHiddenLayerBackPropagationNeuralNetwork<TMeasurementVector,TTargetVector>
::SetInputFunction(InputFunctionInterfaceType* f)
{
  m_InputFunction=f;
}

/** Generate output */
template<typename TMeasurementVector, typename TTargetVector>
typename TwoHiddenLayerBackPropagationNeuralNetwork<TMeasurementVector, TTargetVector>::NetworkOutputType
TwoHiddenLayerBackPropagationNeuralNetwork<TMeasurementVector,TTargetVector>
::GenerateOutput(TMeasurementVector samplevector)
{
  return Superclass::GenerateOutput(samplevector);
}

/** Print the object */
template<typename TMeasurementVector, typename TTargetVector>
void
TwoHiddenLayerBackPropagationNeuralNetwork<TMeasurementVector,TTargetVector>
::PrintSelf( std::ostream& os, Indent indent ) const
{
  os << indent << "TwoHiddenLayerBackPropagationNeuralNetwork(" << this << ")" << std::endl;
  os << indent << "m_NumOfInputNodes = " << m_NumOfInputNodes << std::endl;
  os << indent << "m_NumOfFirstHiddenNodes = " << m_NumOfFirstHiddenNodes << std::endl;
  os << indent << "m_NumOfSecondHiddenNodes = " << m_NumOfSecondHiddenNodes << std::endl;
  os << indent << "m_NumOfOutputNodes = " << m_NumOfOutputNodes << std::endl;
  os << indent << "m_FirstHiddenLayerBias = " << m_FirstHiddenLayerBias << std::endl;
  os << indent << "m_OutputLayerBias = " << m_OutputLayerBias << std::endl;
  os << indent << "m_InputFunction = " << m_InputFunction << std::endl;
  os << indent << "m_InputTransferFunction = " << m_InputTransferFunction << std::endl;
  os << indent << "m_FirstHiddenTransferFunction = " << m_FirstHiddenTransferFunction << std::endl;
  os << indent << "m_OutputTransferFunction = " << m_OutputTransferFunction << std::endl;
  Superclass::PrintSelf( os, indent );
}

} // end namespace Statistics
} // end namespace itk

#endif