/usr/include/ITK-4.5/itkTwoHiddenLayerBackPropagationNeuralNetwork.hxx is in libinsighttoolkit4-dev 4.5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 | /*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef __itkTwoHiddenLayerBackPropagationNeuralNetwork_hxx
#define __itkTwoHiddenLayerBackPropagationNeuralNetwork_hxx
#include "itkTwoHiddenLayerBackPropagationNeuralNetwork.h"
namespace itk
{
namespace Statistics
{
/** Constructor */
template<typename TMeasurementVector, typename TTargetVector>
TwoHiddenLayerBackPropagationNeuralNetwork<TMeasurementVector,TTargetVector>
::TwoHiddenLayerBackPropagationNeuralNetwork()
{
typedef IdentityTransferFunction<ValueType> tfType1;
m_InputTransferFunction = tfType1::New();
typedef TanSigmoidTransferFunction<ValueType> tfType2;
m_FirstHiddenTransferFunction = tfType2::New();
m_SecondHiddenTransferFunction = tfType2::New();
typedef TanSigmoidTransferFunction<ValueType> tfType3;
m_OutputTransferFunction= tfType3::New();
typedef SumInputFunction<ValueType*, ValueType> InputFcnType;
m_InputFunction=InputFcnType::New();
m_NumOfInputNodes = 0;
m_NumOfFirstHiddenNodes = 0;
m_NumOfSecondHiddenNodes = 0;
m_NumOfOutputNodes = 0;
m_FirstHiddenLayerBias = 1.0;
m_SecondHiddenLayerBias = 1.0;
m_OutputLayerBias = 1.0;
}
/** Intialize */
template<typename TMeasurementVector, typename TTargetVector>
void
TwoHiddenLayerBackPropagationNeuralNetwork<TMeasurementVector,TTargetVector>
::Initialize()
{
if(m_NumOfInputNodes == 0 )
{
itkExceptionMacro("ERROR: Number of Input Nodes must be greater than 0!");
}
if(m_NumOfFirstHiddenNodes == 0 )
{
itkExceptionMacro("ERROR: Number of Hidden Layer 1 Nodes must be greater than 0!");
}
if(m_NumOfSecondHiddenNodes == 0 )
{
itkExceptionMacro("ERROR: Number of Hidden Layer 2 Nodes must be greater than 0!");
}
if(m_NumOfOutputNodes == 0 )
{
itkExceptionMacro("ERROR: Number of Output Nodes must be greater than 0!");
}
//Define weights of Nodes
typename LearningLayerType::WeightSetType::Pointer InputLayerOutputWeights = LearningLayerType::WeightSetType::New();
InputLayerOutputWeights->SetNumberOfInputNodes(m_NumOfInputNodes);
InputLayerOutputWeights->SetNumberOfOutputNodes(m_NumOfFirstHiddenNodes);
InputLayerOutputWeights->SetCompleteConnectivity();
InputLayerOutputWeights->SetBias(m_FirstHiddenLayerBias);
InputLayerOutputWeights->SetRange(1.0); //0.5
InputLayerOutputWeights->Initialize();
typename LearningLayerType::WeightSetType::Pointer HiddenLayer1OutputWeights = LearningLayerType::WeightSetType::New();
HiddenLayer1OutputWeights->SetNumberOfInputNodes(m_NumOfFirstHiddenNodes);
HiddenLayer1OutputWeights->SetNumberOfOutputNodes(m_NumOfSecondHiddenNodes);
HiddenLayer1OutputWeights->SetCompleteConnectivity();
HiddenLayer1OutputWeights->SetBias(m_SecondHiddenLayerBias);
HiddenLayer1OutputWeights->SetRange(1.0); //0.5
HiddenLayer1OutputWeights->Initialize();
typename LearningLayerType::WeightSetType::Pointer HiddenLayer2OutputWeights = LearningLayerType::WeightSetType::New();
HiddenLayer2OutputWeights->SetNumberOfInputNodes(m_NumOfSecondHiddenNodes);
HiddenLayer2OutputWeights->SetNumberOfOutputNodes(m_NumOfOutputNodes);
HiddenLayer2OutputWeights->SetCompleteConnectivity();
HiddenLayer2OutputWeights->SetBias(m_OutputLayerBias);
HiddenLayer2OutputWeights->SetRange(1.0); //0.5
HiddenLayer2OutputWeights->Initialize();
//Define layers
typename LearningLayerType::Pointer inputlayer = LearningLayerType::New();
inputlayer->SetLayerTypeCode(LearningLayerType::INPUTLAYER);
inputlayer->SetNumberOfNodes(m_NumOfInputNodes);
inputlayer->SetTransferFunction(m_InputTransferFunction);
inputlayer->SetNodeInputFunction(m_InputFunction);
typename LearningLayerType::Pointer hiddenlayer1 = LearningLayerType::New();
hiddenlayer1->SetLayerTypeCode(LearningLayerType::HIDDENLAYER);
hiddenlayer1->SetNumberOfNodes(m_NumOfFirstHiddenNodes);
hiddenlayer1->SetTransferFunction(m_FirstHiddenTransferFunction);
hiddenlayer1->SetNodeInputFunction(m_InputFunction);
typename LearningLayerType::Pointer hiddenlayer2 = LearningLayerType::New();
hiddenlayer2->SetLayerTypeCode(LearningLayerType::HIDDENLAYER);
hiddenlayer2->SetNumberOfNodes(m_NumOfSecondHiddenNodes);
hiddenlayer2->SetTransferFunction(m_SecondHiddenTransferFunction);
hiddenlayer2->SetNodeInputFunction(m_InputFunction);
typename LearningLayerType::Pointer outputlayer = LearningLayerType::New();
outputlayer->SetLayerTypeCode(LearningLayerType::OUTPUTLAYER);
outputlayer->SetNumberOfNodes(m_NumOfOutputNodes);
outputlayer->SetTransferFunction(m_OutputTransferFunction);
outputlayer->SetNodeInputFunction(m_InputFunction);
Superclass::AddLayer(inputlayer);
Superclass::AddLayer(hiddenlayer1);
Superclass::AddLayer(hiddenlayer2);
Superclass::AddLayer(outputlayer);
Superclass::AddWeightSet(InputLayerOutputWeights);
Superclass::AddWeightSet(HiddenLayer1OutputWeights);
Superclass::AddWeightSet(HiddenLayer2OutputWeights);
//HACK: NOTE: You can not set the WeightSets until after the layers are added to the network because
// the LayerId's must have been set prior to the Weights being added to the layers.
// The ordering of putting together the networks is crucial. Layers must be added to network
// prior to weights being added to layers.
inputlayer->SetOutputWeightSet(InputLayerOutputWeights);
hiddenlayer1->SetInputWeightSet(InputLayerOutputWeights);
hiddenlayer1->SetOutputWeightSet(HiddenLayer1OutputWeights);
hiddenlayer2->SetInputWeightSet(HiddenLayer1OutputWeights);
hiddenlayer2->SetOutputWeightSet(HiddenLayer2OutputWeights);
outputlayer->SetInputWeightSet(HiddenLayer2OutputWeights);
}
template<typename TMeasurementVector, typename TTargetVector>
void
TwoHiddenLayerBackPropagationNeuralNetwork<TMeasurementVector,TTargetVector>
::SetInputTransferFunction(TransferFunctionInterfaceType* f)
{
m_InputTransferFunction=f;
}
template<typename TMeasurementVector, typename TTargetVector>
void
TwoHiddenLayerBackPropagationNeuralNetwork<TMeasurementVector,TTargetVector>
::SetFirstHiddenTransferFunction(TransferFunctionInterfaceType* f)
{
m_FirstHiddenTransferFunction=f;
}
template<typename TMeasurementVector, typename TTargetVector>
void
TwoHiddenLayerBackPropagationNeuralNetwork<TMeasurementVector,TTargetVector>
::SetOutputTransferFunction(TransferFunctionInterfaceType* f)
{
m_OutputTransferFunction=f;
}
template<typename TMeasurementVector, typename TTargetVector>
void
TwoHiddenLayerBackPropagationNeuralNetwork<TMeasurementVector,TTargetVector>
::SetInputFunction(InputFunctionInterfaceType* f)
{
m_InputFunction=f;
}
/** Generate output */
template<typename TMeasurementVector, typename TTargetVector>
typename TwoHiddenLayerBackPropagationNeuralNetwork<TMeasurementVector, TTargetVector>::NetworkOutputType
TwoHiddenLayerBackPropagationNeuralNetwork<TMeasurementVector,TTargetVector>
::GenerateOutput(TMeasurementVector samplevector)
{
return Superclass::GenerateOutput(samplevector);
}
/** Print the object */
template<typename TMeasurementVector, typename TTargetVector>
void
TwoHiddenLayerBackPropagationNeuralNetwork<TMeasurementVector,TTargetVector>
::PrintSelf( std::ostream& os, Indent indent ) const
{
os << indent << "TwoHiddenLayerBackPropagationNeuralNetwork(" << this << ")" << std::endl;
os << indent << "m_NumOfInputNodes = " << m_NumOfInputNodes << std::endl;
os << indent << "m_NumOfFirstHiddenNodes = " << m_NumOfFirstHiddenNodes << std::endl;
os << indent << "m_NumOfSecondHiddenNodes = " << m_NumOfSecondHiddenNodes << std::endl;
os << indent << "m_NumOfOutputNodes = " << m_NumOfOutputNodes << std::endl;
os << indent << "m_FirstHiddenLayerBias = " << m_FirstHiddenLayerBias << std::endl;
os << indent << "m_OutputLayerBias = " << m_OutputLayerBias << std::endl;
os << indent << "m_InputFunction = " << m_InputFunction << std::endl;
os << indent << "m_InputTransferFunction = " << m_InputTransferFunction << std::endl;
os << indent << "m_FirstHiddenTransferFunction = " << m_FirstHiddenTransferFunction << std::endl;
os << indent << "m_OutputTransferFunction = " << m_OutputTransferFunction << std::endl;
Superclass::PrintSelf( os, indent );
}
} // end namespace Statistics
} // end namespace itk
#endif
|