This file is indexed.

/usr/include/ITK-4.5/itkUniformRandomSpatialNeighborSubsampler.h is in libinsighttoolkit4-dev 4.5.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef __itkUniformRandomSpatialNeighborSubsampler_h
#define __itkUniformRandomSpatialNeighborSubsampler_h

#include "itkSpatialNeighborSubsampler.h"
#include "itkMersenneTwisterRandomVariateGenerator.h"

namespace itk {
namespace Statistics {
/** \class UniformRandomSpatialNeighborSubsampler
 * \brief A subsampler that uniformly randomly selects points
 * within the specified radius of the query point.
 *
 * This class derives from SpatialNeighborSubsampler and
 * randomly selects points according to a uniform distribution
 * within the Radius given by SetRadius(radius)
 * as long as that point is also within the RegionConstraint.
 *
 * This class assumes that the instance identifiers in the input
 * sample correspond to the result of ComputeOffset() of the index
 * of the corresponding point in the image region.
 *
 * \sa SubsamplerBase, RegionConstrainedSubsampler
 * \sa SpatialNeighborSubsampler
 * \sa GaussianRandomSpatialNeighborSubsampler
 * \ingroup ITKStatistics
 */

template < typename TSample, typename TRegion >
  class UniformRandomSpatialNeighborSubsampler : public SpatialNeighborSubsampler<TSample, TRegion>
{
public:
  /** Standard class typedefs */
  typedef UniformRandomSpatialNeighborSubsampler<TSample, TRegion>  Self;
  typedef SpatialNeighborSubsampler<TSample, TRegion>               Superclass;
  typedef typename Superclass::Baseclass                            Baseclass;
  typedef SmartPointer<Self>                                        Pointer;
  typedef SmartPointer<const Self>                                  ConstPointer;

  /** Run-time type information (and related methods) */
  itkTypeMacro(UniformRandomSpatialNeighborSubsampler, SpatialNeighborSubsampler);

  /** Method for creation through the object factory. */
  itkNewMacro(Self);

  /** typedef alias for the source data container */
  typedef typename Superclass::SampleType                  SampleType;
  typedef typename Superclass::SampleConstPointer          SampleConstPointer;
  typedef typename Superclass::MeasurementVectorType       MeasurementVectorType;
  typedef typename Superclass::InstanceIdentifier          InstanceIdentifier;

  typedef typename Superclass::SubsampleType            SubsampleType;
  typedef typename Superclass::SubsamplePointer         SubsamplePointer;
  typedef typename Superclass::SubsampleConstIterator   SubsampleConstIterator;
  typedef typename Superclass::InstanceIdentifierHolder InstanceIdentifierHolder;
  typedef typename Baseclass::SeedType                  SeedType;

  typedef unsigned long                       SearchSizeType;
  typedef unsigned int                        RandomIntType;

  /** typedefs related to image region */
  typedef typename Superclass::RadiusType      RadiusType;
  typedef typename Superclass::RegionType      RegionType;
  typedef typename Superclass::IndexType       IndexType;
  typedef typename Superclass::IndexValueType  IndexValueType;
  typedef typename Superclass::SizeType        SizeType;
  typedef typename Superclass::ImageHelperType ImageHelperType;


  /** typedefs related to random variate generator */
  typedef itk::Statistics::MersenneTwisterRandomVariateGenerator RandomGeneratorType;

  virtual void SetSeed(const SeedType seed)
  {
    Superclass::SetSeed(seed);
    this->m_RandomNumberGenerator->SetSeed(this->m_Seed);
  }

  virtual void SetUseClockForSeed(const bool& useClock)
  {
    if (useClock != this->m_UseClockForSeed)
    {
      this->m_UseClockForSeed = useClock;
      if (this->m_UseClockForSeed)
      {
        this->m_RandomNumberGenerator->SetSeed();
      }
      this->Modified();
    }
  }

  itkBooleanMacro(UseClockForSeed);
  itkGetConstMacro(UseClockForSeed, bool);

  virtual void SetNumberOfResultsRequested(const SearchSizeType& numberRequested)
  {
    itkDebugMacro("setting NumberOfResultsRequested to " << numberRequested);
    if (this->m_RequestMaximumNumberOfResults ||
        this->m_NumberOfResultsRequested != numberRequested)
    {
      this->m_NumberOfResultsRequested = numberRequested;
      this->m_RequestMaximumNumberOfResults = false;
      this->Modified();
    }
  }
  itkGetConstMacro(NumberOfResultsRequested, SearchSizeType);

  /** Main Search method that MUST be implemented by each subclass
   * The Search method will find all points similar to query and return
   * them as a Subsample.  The definition of similar will be subclass-
   * specific.  And could mean spatial similarity or feature similarity
   * etc.  */
  virtual void Search(const InstanceIdentifier& query,
                      SubsamplePointer& results);

protected:
  /**
   * Clone the current subsampler.
   * This does a complete copy of the subsampler state
   * to the new subsampler
   */
  virtual typename LightObject::Pointer InternalClone() const;

  UniformRandomSpatialNeighborSubsampler();
  virtual ~UniformRandomSpatialNeighborSubsampler() {};

  virtual void PrintSelf(std::ostream& os, Indent indent) const;

  /** method to randomly generate an integer in the closed range
   * [lowerBound, upperBound]
   * using a uniform sampling selection method.
   * override this method to do gaussian selection */
  virtual RandomIntType GetIntegerVariate(RandomIntType lowerBound,
                                          RandomIntType upperBound,
                                          RandomIntType itkNotUsed(mean));

  SearchSizeType               m_NumberOfResultsRequested;
  RandomGeneratorType::Pointer m_RandomNumberGenerator;
  bool                         m_UseClockForSeed;

private:
  UniformRandomSpatialNeighborSubsampler(const Self&); // purposely not implemented
  void operator=(const Self&); // purposely not implemented

}; // end of class UniformRandomSpatialNeighborSubsampler

} // end of namespace Statistics
} // end of namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#include "itkUniformRandomSpatialNeighborSubsampler.hxx"
#endif

#endif