This file is indexed.

/usr/include/ITK-4.5/itkVariableLengthVector.h is in libinsighttoolkit4-dev 4.5.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef __itkVariableLengthVector_h
#define __itkVariableLengthVector_h

#include "itkNumericTraits.h"

namespace itk
{
/** \class VariableLengthVector
 * \brief Represents an array whose length can be defined at run-time.
 *
 * This class is templated over the data type. This data-type is meant
 * to be a scalar, such as float, double etc...
 *
 * \note
 * ITK itself provides several classes that can serve as \c Arrays.
 * \li FixedArray - Compile time fixed length arrays that's intended to
 * represent an enumerated collection of \c n entities.
 *
 * \li Array - Run time resizeable array that is intended to hold a
 * collection of \c n entities
 *
 * \li Vector - Compile time fixed length array that is intended to hold
 * a collection of \c n data types. A vector usually has a mathematical meaning.
 * It should only be used when mathematical operations such as addition,
 * multiplication by a scalar, product etc make sense.
 *
 * \li VariableLengthVector - Run time array that is intended to hold a collection
 * of scalar data types. Again, it should be used only when mathematical
 * operations on it are relevant. If not, use an Array.
 *
 * \li Point - Represents the spatial coordinates of a spatial location. Operators
 * on Point reflect geometrical concepts.
 *
 * \par For the reasons listed above, you cannot instantiate
 * \code VariableLengthVector< bool > \endcode.
 *
 * \par
 * Design Considerations: We do not derive from \c vnl_vector to avoid being
 * limited by the explicit template instantiations of vnl_vector and other
 * hacks that vnl folks have been forced to use.
 *
 * \note
 * This work is part of the National Alliance for Medical Image Computing
 * (NAMIC), funded by the National Institutes of Health through the NIH Roadmap
 * for Medical Research, Grant U54 EB005149.
 *
 * \sa CovariantVector
 * \sa SymmetricSecondRankTensor
 * \sa RGBPixel
 * \sa DiffusionTensor3D
 * \ingroup DataRepresentation
 * \ingroup ITKCommon
 *
 * \wiki
 * \wikiexample{SimpleOperations/VariableLengthVector,Variable length vector}
 * \endwiki
 */
template< typename TValueType >
class VariableLengthVector
{
public:

  /** The element type stored at each location in the Array. */
  typedef TValueType                                    ValueType;
  typedef TValueType                                    ComponentType;
  typedef typename NumericTraits< ValueType >::RealType RealValueType;
  typedef VariableLengthVector                          Self;

  /** Typedef used to indicate the number of elements in the vector */
  typedef unsigned int ElementIdentifier;

  /** Default constructor. It is created with an empty array
   *  it has to be allocated later by assignment              */
  VariableLengthVector();

  /** Constructor with size. Size can only be changed by assignment */
  explicit VariableLengthVector(unsigned int dimension);

  /** Constructor that initializes array with contents from a user supplied
   * buffer. The pointer to the buffer and the length is specified. By default,
   * the array does not manage the memory of the buffer. It merely points to
   * that location and it is the user's responsibility to delete it.
   * If "LetArrayManageMemory" is true, then this class will free the
   * memory when this object is destroyed. */
  VariableLengthVector(ValueType *data, unsigned int sz,
                       bool LetArrayManageMemory = false);

  /** Constructor that initializes array with contents from a user supplied
   * buffer. The pointer to the buffer and the length is specified. By default,
   * the array does not manage the memory of the buffer. It merely points to
   * that location and it is the user's responsibility to delete it.
   * If "LetArrayManageMemory" is true, then this class will free the
   * memory when this object is destroyed. */
  VariableLengthVector(const ValueType *data, unsigned int sz,
                       bool LetArrayManageMemory = false);

  /** Copy constructor. The reason why the copy constructor and the assignment
   * operator are templated is that it will allow implicit casts to be
   * performed. For instance
   * \code
   * VariableLengthVector< int > vI;
   * VariableLengthVector< float > vF( vI );
   * or for instance vF = static_cast< VariableLengthVector< float > >( vI );
   * \endcode
   */
  template< typename T >
  VariableLengthVector(const VariableLengthVector< T > & v)
  {
    m_NumElements = v.Size();
    m_Data = this->AllocateElements(m_NumElements);
    m_LetArrayManageMemory = true;
    for ( ElementIdentifier i = 0; i < v.Size(); i++ )
      {
      this->m_Data[i] = static_cast< ValueType >( v[i] );
      }
  }

  /** Copy constructer.. Override the default non-templated copy constructor
   * that the compiler provides */
  VariableLengthVector(const VariableLengthVector< TValueType > & v);

  /** Set the all the elements of the array to the specified value */
  void Fill(TValueType const & v);

  /** Assignment operator  */
  template< typename T >
  const VariableLengthVector< TValueType > & operator=
    (const VariableLengthVector< T > & v)
  {
    if ( m_Data == static_cast< void * >( const_cast< T * >
                                          ( ( const_cast< VariableLengthVector< T > & >( v ) ).GetDataPointer() ) ) )
      {
      return *this;
      }
    this->SetSize( v.Size() );
    for ( ElementIdentifier i = 0; i < v.Size(); i++ )
      {
      this->m_Data[i] = static_cast< ValueType >( v[i] );
      }
    return *this;
  }

  /** Assignment operators  */
  const Self & operator=(const Self & v);

  const Self & operator=(TValueType const & v);

  /** Return the number of elements in the Array  */
  inline unsigned int Size(void) const { return m_NumElements; }
  inline unsigned int GetNumberOfElements(void) const { return m_NumElements; }

  /** Return reference to the element at specified index. No range checking. */
  TValueType       & operator[](unsigned int i) { return this->m_Data[i]; }
  /** Return reference to the element at specified index. No range checking. */
  TValueType const & operator[](unsigned int i) const { return this->m_Data[i]; }

  /** Get one element */
  inline const TValueType & GetElement(unsigned int i) const { return m_Data[i]; }

  /** Set one element */
  void SetElement(unsigned int i, const TValueType & value) { m_Data[i] = value; }

  /** Set the size to that given.
   *
   * If \c destroyExistingData is \c false:
   * If the array already contains data, the existing data is copied over and
   * new space is allocated, if necessary. If the length to reserve is less
   * than the current number of elements, then an appropriate number of elements
   * are discarded.
   *    If \c true, the size is set destructively to the length given. If the
   * length is different from the current length, existing data will be lost.
   * The default is \c true. */
  void SetSize(unsigned int sz, bool destroyExistingData = true);

  /** Destroy data that is allocated internally, if LetArrayManageMemory is
   * true. */
  void DestroyExistingData();

  inline unsigned int GetSize(void) const { return m_NumElements; }

  /** Set the pointer from which the data is imported.
   * If "LetArrayManageMemory" is false, then the application retains
   * the responsibility of freeing the memory for this data.  If
   * "LetArrayManageMemory" is true, then this class will free the
   * memory when this object is destroyed. */
  void SetData(TValueType *data, bool LetArrayManageMemory = false);

  /** Similar to the previous method. In the above method, the size must be
   * separately set prior to using user-supplied data. This introduces an
   * unnecessary allocation step to be performed. This method avoids it
   * and should be used to import data wherever possible to avoid this.
   * Set the pointer from which the data is imported.
   * If "LetArrayManageMemory" is false, then the application retains
   * the responsibility of freeing the memory for this data.  If
   * "LetArrayManageMemory" is true, then this class will free the
   * memory when this object is destroyed. */
  void SetData(TValueType *data, unsigned int sz, bool LetArrayManageMemory = false);

  /** This destructor is not virtual for performance reasons. However, this
   * means that subclasses cannot allocate memory. */
  ~VariableLengthVector();

  /** Reserves memory of a certain length.
   *
   * If the array already contains data, the existing data is copied over and
   * new space is allocated, if necessary. If the length to reserve is less
   * than the current number of elements, then an appropriate number of elements
   * are discarded. */
  void Reserve(ElementIdentifier);

  /** Allocate memory of certain size and return it.  */
  TValueType * AllocateElements(ElementIdentifier size) const;

  const TValueType * GetDataPointer() const { return m_Data; }

  /** Element-wise vector addition. The vectors do not have to have
   * the same element type. The input vector elements are cast to the
   * output vector element type before the addition is performed.
   *
   * \note For efficiency, the length of the vectors is not checked;
   * they are assumed to have the same length. */
  template< typename T >
  inline Self operator+(const VariableLengthVector< T > & v) const
  {
    // if( m_NumElements != v.GetSize() )
    //   {
    //   itkGenericExceptionMacro( << "Cannot add VariableLengthVector of length
    // "
    //                             << m_NumElements " and " << v.GetSize() );
    //   }
    const ElementIdentifier length = v.Size();
    Self                    result(length);

    for ( ElementIdentifier i = 0; i < length; i++ )
      {
      result[i] = ( *this )[i] + static_cast< ValueType >( v[i] );
      }
    return result;
  }

  /** Element-wise subtraction of vectors. The vectors do not have to
   * have the same element type. The input vector elements are cast to
   * the output vector element type before the subtraction is
   * performed.
   *
   * \note For efficiency, the length of the vectors is not checked;
   * they are assumed to have the same length. */
  template< typename T >
  inline Self operator-(const VariableLengthVector< T > & v) const
  {
    // if( m_NumElements != v.GetSize() )
    //   {
    //   itkGenericExceptionMacro( << "Cannot add VariableLengthVector of length
    // "
    //                             << m_NumElements " and " << v.GetSize() );
    //   }
    const ElementIdentifier length = v.Size();
    Self                    result(length);

    for ( ElementIdentifier i = 0; i < length; i++ )
      {
      result[i] = ( *this )[i] - static_cast< ValueType >( v[i] );
      }
    return result;
  }

  /** Multiply vector elements by a scalar 's'. The vector does not
   * have to have the same element type as the scalar type. The scalar
   * is cast to the output vector element type before the
   * multiplication is performed. */
  template< typename T >
  inline Self operator*(T s) const
  {
    Self result(m_NumElements);

    for ( ElementIdentifier i = 0; i < m_NumElements; i++ )
      {
      result[i] = m_Data[i] * static_cast< ValueType >( s );
      }
    return result;
  }

  /** Divide vector elements by a scalar 's'. The vector does not
   * have to have the same element type as the scalar type. Both the
   * scalar and vector elements are cast to the RealValueType prior to
   * division, and the result is cast to the ValueType. */
  template< typename T >
  inline Self operator/(T s) const
  {
    Self result(m_NumElements);

    for ( ElementIdentifier i = 0; i < m_NumElements; i++ )
      {
      result[i] = static_cast< ValueType >(
        static_cast< RealValueType >( m_Data[i] )
        / static_cast< RealValueType >( s ) );
      }
    return result;
  }

  /** Add scalar 's' to each element of the vector.*/
  inline Self operator+(TValueType s) const
  {
    Self result(m_NumElements);

    for ( ElementIdentifier i = 0; i < m_NumElements; i++ )
      {
      result[i] = m_Data[i] + s;
      }
    return result;
  }

  /** Subtract scalar 's' from each element of the vector.*/
  inline Self operator-(TValueType s) const
  {
    Self result(m_NumElements);

    for ( ElementIdentifier i = 0; i < m_NumElements; i++ )
      {
      result[i] = m_Data[i] - s;
      }
    return result;
  }

  /** Prefix operator that subtracts 1 from each element of the
   * vector. */
  inline Self & operator--()
  {
    for ( ElementIdentifier i = 0; i < m_NumElements; i++ )
      {
      this->m_Data[i] -= static_cast< ValueType >( 1.0 );
      }
    return *this;
  }

  /** Prefix operator that adds 1 to each element of the vector. */
  inline Self & operator++() // prefix operator ++v;
  {
    for ( ElementIdentifier i = 0; i < m_NumElements; i++ )
      {
      this->m_Data[i] += static_cast< ValueType >( 1.0 );
      }
    return *this;
  }

  /** Postfix operator that subtracts 1 from each element of the
   * vector. */
  inline Self operator--(int) // postfix operator v--;
  {
    Self tmp(*this);

    --tmp;
    return tmp;
  }

  /** Postfix operator that adds 1 to each element of the vector. */
  inline Self operator++(int) // postfix operator v++;
  {
    Self tmp(*this);

    ++tmp;
    return tmp;
  }

  /** Element-wise subtraction of vector 'v' from the current
   * vector. The vectors do not have to have the same element
   * type. The input vector elements are cast to the current vector
   * element type before the subtraction is performed.
   *
   * \note For efficiency, the length of the vectors is not checked;
   * they are assumed to have the same length. */
  template< typename T >
  inline Self & operator-=
    (const VariableLengthVector< T > & v)
  {
    for ( ElementIdentifier i = 0; i < m_NumElements; i++ )
      {
      m_Data[i] -= static_cast< ValueType >( v[i] );
      }
    return *this;
  }

  /** Subtract scalar 's' from each element of the current vector. */
  inline Self & operator-=(TValueType s)
  {
    for ( ElementIdentifier i = 0; i < m_NumElements; i++ )
      {
      m_Data[i] -= s;
      }
    return *this;
  }

  /** Element-wise addition of vector 'v' to the current vector. The
   * vectors do not have to have the same element type. The input
   * vector elements are cast to the current vector element type
   * before the addition is performed.
   *
   * \note For efficiency, the length of the vectors is not checked;
   * they are assumed to have the same length. */
  template< typename T >
  inline Self & operator+=
    (const VariableLengthVector< T > & v)
  {
    for ( ElementIdentifier i = 0; i < m_NumElements; i++ )
      {
      m_Data[i] += static_cast< ValueType >( v[i] );
      }
    return *this;
  }

  /** Add scalar 's' to each element of the vector. */
  inline Self & operator+=(TValueType s)
  {
    for ( ElementIdentifier i = 0; i < m_NumElements; i++ )
      {
      m_Data[i] += s;
      }
    return *this;
  }

  /** Multiply each element of the vector by a scalar 's'. The scalar
   * value is cast to the current vector element type prior to
   * multiplication. */
  template< typename T >
  inline Self & operator*=(T s)
  {
    for ( ElementIdentifier i = 0; i < m_NumElements; i++ )
      {
      m_Data[i] *= ( static_cast< ValueType >( s ) );
      }
    return *this;
  }

  /** Divide vector elements by a scalar 's'. The vector does not
   * have to have the same element type as the scalar type. Both the
   * scalar and vector elements are cast to the RealValueType prior to
   * division, and the result is cast to the ValueType. */
  template< typename T >
  inline Self & operator/=(T s)
  {
    for ( ElementIdentifier i = 0; i < m_NumElements; i++ )
      {
      m_Data[i] = static_cast< ValueType >(
        static_cast< RealValueType >( m_Data[i] )
        / static_cast< RealValueType >( s ) );
      }
    return *this;
  }

  /** Negates each vector element. */
  Self & operator-();  // negation operator

  bool operator==(const Self & v) const;

  bool operator!=(const Self & v) const;

  /** Returns vector's Euclidean Norm  */
  RealValueType GetNorm() const;

  /** Returns vector's squared Euclidean Norm  */
  RealValueType GetSquaredNorm() const;

private:

  bool              m_LetArrayManageMemory; // if true, the array is responsible
                                            // for memory of data
  TValueType *      m_Data;                 // Array to hold data
  ElementIdentifier m_NumElements;
};

/** Premultiply Operator for product of a VariableLengthVector and a scalar.
 *  VariableLengthVector< TValueType >  =  T * VariableLengthVector< TValueType >
 */
template< typename TValueType, typename T >
inline
VariableLengthVector< TValueType >
operator*(const T & scalar, const VariableLengthVector< TValueType > & v)
{
  return v * scalar;
}

template< typename TValueType >
std::ostream & operator<<(std::ostream & os, const VariableLengthVector< TValueType > & arr)
{
  const unsigned int length = arr.Size();
  const signed int   last   = (unsigned int)length - 1;

  os << "[";
  for ( signed int i = 0; i < last; ++i )
    {
    os << arr[i] << ", ";
    }
  if ( length >= 1 )
    {
    os << arr[last];
    }
  os << "]";
  return os;
}
} // namespace itk

#include "itkNumericTraitsVariableLengthVectorPixel.h"

#ifndef ITK_MANUAL_INSTANTIATION
#include "itkVariableLengthVector.hxx"
#endif

#endif