/usr/include/ITK-4.5/itkVectorAnisotropicDiffusionFunction.hxx is in libinsighttoolkit4-dev 4.5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 | /*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef __itkVectorAnisotropicDiffusionFunction_hxx
#define __itkVectorAnisotropicDiffusionFunction_hxx
#include "itkVectorAnisotropicDiffusionFunction.h"
#include "itkConstNeighborhoodIterator.h"
#include "itkVectorNeighborhoodInnerProduct.h"
#include "itkNeighborhoodAlgorithm.h"
#include "itkDerivativeOperator.h"
namespace itk
{
template< typename TImage >
void
VectorAnisotropicDiffusionFunction< TImage >
::CalculateAverageGradientMagnitudeSquared(TImage *ip)
{
typedef ConstNeighborhoodIterator< TImage > RNI_type;
typedef ConstNeighborhoodIterator< TImage > SNI_type;
typedef NeighborhoodAlgorithm::ImageBoundaryFacesCalculator< TImage > BFC_type;
unsigned int i, j;
// ZeroFluxNeumannBoundaryCondition<TImage> bc;
double accumulator;
PixelType val;
SizeValueType counter;
BFC_type bfc;
typename BFC_type::FaceListType faceList;
typename RNI_type::RadiusType radius;
typename BFC_type::FaceListType::iterator fit;
VectorNeighborhoodInnerProduct< TImage > SIP;
VectorNeighborhoodInnerProduct< TImage > IP;
RNI_type iterator_list[ImageDimension];
SNI_type face_iterator_list[ImageDimension];
typedef typename PixelType::ValueType PixelValueType;
DerivativeOperator< PixelValueType, ImageDimension > operator_list[ImageDimension];
// Set up the derivative operators, one for each dimension
for ( i = 0; i < ImageDimension; ++i )
{
operator_list[i].SetOrder(1);
operator_list[i].SetDirection(i);
operator_list[i].CreateDirectional();
radius[i] = operator_list[i].GetRadius()[i];
}
// Get the various region "faces" that are on the data set boundary.
faceList = bfc(ip, ip->GetRequestedRegion(), radius);
fit = faceList.begin();
// Now do the actual processing
accumulator = 0.0;
counter = NumericTraits<SizeValueType>::Zero;
// First process the non-boundary region
// Instead of maintaining a single N-d neighborhood of pointers,
// we maintain a list of 1-d neighborhoods along each axial direction.
// This is more efficient for higher dimensions.
for ( i = 0; i < ImageDimension; ++i )
{
iterator_list[i] = RNI_type(operator_list[i].GetRadius(), ip, *fit);
iterator_list[i].GoToBegin();
}
while ( !iterator_list[0].IsAtEnd() )
{
counter++;
for ( i = 0; i < ImageDimension; ++i )
{
val = IP(iterator_list[i], operator_list[i]);
for ( j = 0; j < VectorDimension; ++j )
{
accumulator += val[j] * val[j];
}
++iterator_list[i];
}
}
// Go on to the next region(s). These are on the boundary faces.
++fit;
while ( fit != faceList.end() )
{
for ( i = 0; i < ImageDimension; ++i )
{
face_iterator_list[i] = SNI_type(operator_list[i].GetRadius(), ip, *fit);
face_iterator_list[i].GoToBegin();
}
while ( !face_iterator_list[0].IsAtEnd() )
{
counter++;
for ( i = 0; i < ImageDimension; ++i )
{
val = SIP(face_iterator_list[i], operator_list[i]);
for ( j = 0; j < VectorDimension; ++j )
{
accumulator += val[j] * val[j];
}
++face_iterator_list[i];
}
}
++fit;
}
this->SetAverageGradientMagnitudeSquared( (double)accumulator / counter );
}
} // end namespace itk
#endif
|