/usr/include/ITK-4.5/itkVectorCurvatureNDAnisotropicDiffusionFunction.hxx is in libinsighttoolkit4-dev 4.5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 | /*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef __itkVectorCurvatureNDAnisotropicDiffusionFunction_hxx
#define __itkVectorCurvatureNDAnisotropicDiffusionFunction_hxx
#include "itkVectorCurvatureNDAnisotropicDiffusionFunction.h"
namespace itk
{
template< typename TImage >
double VectorCurvatureNDAnisotropicDiffusionFunction< TImage >
::m_MIN_NORM = 1.0e-10;
template< typename TImage >
VectorCurvatureNDAnisotropicDiffusionFunction< TImage >
::VectorCurvatureNDAnisotropicDiffusionFunction():
m_K( 0.0 )
{
unsigned int i, j;
RadiusType r;
for ( i = 0; i < ImageDimension; ++i )
{
r[i] = 1;
}
this->SetRadius(r);
// Dummy neighborhood used to set up the slices.
Neighborhood< PixelType, ImageDimension > it;
it.SetRadius(r);
// Slice the neighborhood
m_Center = it.Size() / 2;
for ( i = 0; i < ImageDimension; ++i )
{
m_Stride[i] = it.GetStride(i);
}
for ( i = 0; i < ImageDimension; ++i )
{
x_slice[i] = std::slice(m_Center - m_Stride[i], 3, m_Stride[i]);
}
for ( i = 0; i < ImageDimension; ++i )
{
for ( j = 0; j < ImageDimension; ++j )
{
// For taking derivatives in the i direction that are offset one
// pixel in the j direction.
xa_slice[i][j] =
std::slice( ( m_Center + m_Stride[j] ) - m_Stride[i], 3, m_Stride[i] );
xd_slice[i][j] =
std::slice( ( m_Center - m_Stride[j] ) - m_Stride[i], 3, m_Stride[i] );
}
}
// Allocate the derivative operator.
dx_op.SetDirection(0); // Not relelevant, we'll apply in a slice-based
// fashion
dx_op.SetOrder(1);
dx_op.CreateDirectional();
}
template< typename TImage >
typename VectorCurvatureNDAnisotropicDiffusionFunction< TImage >::PixelType
VectorCurvatureNDAnisotropicDiffusionFunction< TImage >
::ComputeUpdate(const NeighborhoodType & it, void *,
const FloatOffsetType &)
{
unsigned int i, j, k;
double speed;
double dx_forward_Cn[ImageDimension][VectorDimension];
double dx_backward_Cn[ImageDimension][VectorDimension];
double propagation_gradient;
double grad_mag_sq[VectorDimension];
double grad_mag_sq_d[VectorDimension];
double grad_mag[VectorDimension];
double grad_mag_d[VectorDimension];
double Cx[ImageDimension];
double Cxd[ImageDimension];
const ScalarValueType ScalarValueTypeZero = NumericTraits< ScalarValueType >::Zero;
PixelType dx_forward[ImageDimension];
PixelType dx_backward[ImageDimension];
PixelType dx[ImageDimension];
PixelType dx_aug;
PixelType dx_dim;
PixelType ans;
// Calculate the partial derivatives for each dimension
for ( i = 0; i < ImageDimension; i++ )
{
// ``Half'' derivatives
dx_forward[i] = it.GetPixel(m_Center + m_Stride[i])
- it.GetPixel(m_Center);
dx_forward[i] = dx_forward[i] * this->m_ScaleCoefficients[i];
dx_backward[i] = it.GetPixel(m_Center)
- it.GetPixel(m_Center - m_Stride[i]);
dx_backward[i] = dx_backward[i] * this->m_ScaleCoefficients[i];
// Centralized differences
dx[i] = m_InnerProduct(x_slice[i], it, dx_op);
dx[i] = dx[i] * this->m_ScaleCoefficients[i];
}
for ( k = 0; k < VectorDimension; k++ )
{
grad_mag_sq[k] = 0.0;
grad_mag_sq_d[k] = 0.0;
for ( i = 0; i < ImageDimension; i++ )
{
// Gradient magnitude approximations
grad_mag_sq[k] += dx_forward[i][k] * dx_forward[i][k];
grad_mag_sq_d[k] += dx_backward[i][k] * dx_backward[i][k];
for ( j = 0; j < ImageDimension; j++ )
{
if ( j != i )
{
dx_aug = m_InnerProduct(xa_slice[j][i], it, dx_op);
dx_aug = dx_aug * this->m_ScaleCoefficients[j];
dx_dim = m_InnerProduct(xd_slice[j][i], it, dx_op);
dx_dim = dx_dim * this->m_ScaleCoefficients[j];
grad_mag_sq[k] += 0.25f * ( dx[j][k] + dx_aug[k] ) * ( dx[j][k] + dx_aug[k] );
grad_mag_sq_d[k] += 0.25f * ( dx[j][k] + dx_dim[k] ) * ( dx[j][k] + dx_dim[k] );
}
}
}
grad_mag[k] = vcl_sqrt(m_MIN_NORM + grad_mag_sq[k]);
grad_mag_d[k] = vcl_sqrt(m_MIN_NORM + grad_mag_sq_d[k]);
// this grad mag should depend only on the current k
for ( i = 0; i < ImageDimension; i++ )
{
dx_forward_Cn[i][k] = dx_forward[i][k] / grad_mag[k];
dx_backward_Cn[i][k] = dx_backward[i][k] / grad_mag_d[k];
}
}
double grad_mag_sq_tmp = 0.0;
double grad_mag_sq_d_tmp = 0.0;
for ( k = 0; k < VectorDimension; k++ )
{
grad_mag_sq_tmp += grad_mag_sq[k];
grad_mag_sq_d_tmp += grad_mag_sq_d[k];
}
// this grad mag should depend on the sum over k's
// Conductance Terms
for ( i = 0; i < ImageDimension; i++ )
{
if ( m_K == 0.0 )
{
Cx[i] = 0.0;
Cxd[i] = 0.0;
}
else
{
Cx[i] = vcl_exp(grad_mag_sq_tmp / m_K);
Cxd[i] = vcl_exp(grad_mag_sq_d_tmp / m_K);
}
}
for ( k = 0; k < VectorDimension; k++ )
{
// First order normalized finite-difference conductance products
speed = 0.0;
for ( i = 0; i < ImageDimension; i++ )
{
dx_forward_Cn[i][k] *= Cx[i];
dx_backward_Cn[i][k] *= Cxd[i];
// Second order conductance-modified curvature
speed += ( dx_forward_Cn[i][k] - dx_backward_Cn[i][k] );
}
// ``Upwind'' gradient magnitude term
propagation_gradient = 0.0;
if ( speed > 0.0 )
{
for ( i = 0; i < ImageDimension; i++ )
{
propagation_gradient +=
vnl_math_sqr( vnl_math_min(dx_backward[i][k], ScalarValueTypeZero) )
+ vnl_math_sqr( vnl_math_max(dx_forward[i][k], ScalarValueTypeZero) );
}
}
else
{
for ( i = 0; i < ImageDimension; i++ )
{
propagation_gradient +=
vnl_math_sqr( vnl_math_max(dx_backward[i][k], ScalarValueTypeZero) )
+ vnl_math_sqr( vnl_math_min(dx_forward[i][k], ScalarValueTypeZero) );
}
}
ans[k] = vcl_sqrt(propagation_gradient) * speed;
}
return ans;
}
} // end namespace itk
#endif
|