/usr/include/ITK-4.5/itkVectorGradientNDAnisotropicDiffusionFunction.hxx is in libinsighttoolkit4-dev 4.5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 | /*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef __itkVectorGradientNDAnisotropicDiffusionFunction_hxx
#define __itkVectorGradientNDAnisotropicDiffusionFunction_hxx
#include "itkVectorGradientNDAnisotropicDiffusionFunction.h"
namespace itk
{
template< typename TImage >
double VectorGradientNDAnisotropicDiffusionFunction< TImage >
::m_MIN_NORM = 1.0e-10;
template< typename TImage >
VectorGradientNDAnisotropicDiffusionFunction< TImage >
::VectorGradientNDAnisotropicDiffusionFunction():
m_K( 0.0 )
{
unsigned int i, j;
RadiusType r;
for ( i = 0; i < ImageDimension; ++i )
{
r[i] = 1;
}
this->SetRadius(r);
// Dummy neighborhood used to set up the slices.
Neighborhood< PixelType, ImageDimension > it;
it.SetRadius(r);
// Slice the neighborhood
m_Center = it.Size() / 2;
for ( i = 0; i < ImageDimension; ++i )
{
m_Stride[i] = it.GetStride(i);
}
for ( i = 0; i < ImageDimension; ++i )
{
x_slice[i] = std::slice(m_Center - m_Stride[i], 3, m_Stride[i]);
}
for ( i = 0; i < ImageDimension; ++i )
{
for ( j = 0; j < ImageDimension; ++j )
{
// For taking derivatives in the i direction that are offset one
// pixel in the j direction.
xa_slice[i][j] =
std::slice( ( m_Center + m_Stride[j] ) - m_Stride[i], 3, m_Stride[i] );
xd_slice[i][j] =
std::slice( ( m_Center - m_Stride[j] ) - m_Stride[i], 3, m_Stride[i] );
}
}
// Allocate the derivative operator.
dx_op.SetDirection(0); // Not relelevant, we'll apply in a slice-based
// fashion
dx_op.SetOrder(1);
dx_op.CreateDirectional();
}
template< typename TImage >
typename VectorGradientNDAnisotropicDiffusionFunction< TImage >::PixelType
VectorGradientNDAnisotropicDiffusionFunction< TImage >
::ComputeUpdate(const NeighborhoodType & it, void *,
const FloatOffsetType &)
{
unsigned int i, j, k;
PixelType delta;
double GradMag;
double GradMag_d;
double Cx[ImageDimension];
double Cxd[ImageDimension];
// Remember: PixelType is a Vector of length VectorDimension.
PixelType dx_forward[ImageDimension];
PixelType dx_backward[ImageDimension];
PixelType dx[ImageDimension];
PixelType dx_aug;
PixelType dx_dim;
// Calculate the directional and centralized derivatives.
for ( i = 0; i < ImageDimension; i++ )
{
// ``Half'' derivatives
dx_forward[i] = it.GetPixel(m_Center + m_Stride[i])
- it.GetPixel(m_Center);
dx_forward[i] = dx_forward[i] * this->m_ScaleCoefficients[i];
dx_backward[i] = it.GetPixel(m_Center)
- it.GetPixel(m_Center - m_Stride[i]);
dx_backward[i] = dx_backward[i] * this->m_ScaleCoefficients[i];
// Centralized differences
dx[i] = m_InnerProduct(x_slice[i], it, dx_op);
dx[i] = dx[i] * this->m_ScaleCoefficients[i];
}
// Calculate the conductance term for each dimension.
for ( i = 0; i < ImageDimension; i++ )
{
// Calculate gradient magnitude approximation in this
// dimension linked (summed) across the vector components.
GradMag = 0.0;
GradMag_d = 0.0;
for ( k = 0; k < VectorDimension; k++ )
{
GradMag += vnl_math_sqr(dx_forward[i][k]);
GradMag_d += vnl_math_sqr(dx_backward[i][k]);
for ( j = 0; j < ImageDimension; j++ )
{
if ( j != i )
{
dx_aug = m_InnerProduct(xa_slice[j][i], it, dx_op);
dx_aug = dx_aug * this->m_ScaleCoefficients[j];
dx_dim = m_InnerProduct(xd_slice[j][i], it, dx_op);
dx_dim = dx_dim * this->m_ScaleCoefficients[j];
GradMag += 0.25f * vnl_math_sqr(dx[j][k] + dx_aug[k]);
GradMag_d += 0.25f * vnl_math_sqr(dx[j][k] + dx_dim[k]);
}
}
}
if ( m_K == 0.0 )
{
Cx[i] = 0.0;
Cxd[i] = 0.0;
}
else
{
Cx[i] = vcl_exp(GradMag / m_K);
Cxd[i] = vcl_exp(GradMag_d / m_K);
}
}
// Compute update value
for ( k = 0; k < VectorDimension; k++ )
{
delta[k] = NumericTraits< ScalarValueType >::Zero;
for ( i = 0; i < ImageDimension; ++i )
{
dx_forward[i][k] *= Cx[i];
dx_backward[i][k] *= Cxd[i];
delta[k] += dx_forward[i][k] - dx_backward[i][k];
}
}
return delta;
}
} // end namespace itk
#endif
|