This file is indexed.

/usr/include/ITK-4.5/itkWatershedSegmenter.h is in libinsighttoolkit4-dev 4.5.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef __itkWatershedSegmenter_h
#define __itkWatershedSegmenter_h


#include "itkWatershedBoundary.h"
#include "itkWatershedSegmentTable.h"
#include "itkEquivalencyTable.h"

namespace itk
{
namespace watershed
{
/** \class Segmenter
 *
 * This filter implements the first step in the N-d watershed segmentation
 * algorithm.  It produces a segmented, labeled image from a scalar-valued
 * image input. This filter is used in conjunction with
 * WatershedSegmentTreeGenerator and WatershedRelabeler to produce a final
 * segmented image volume. See itk::WatershedImageFilter for an overview of the
 * entire algorithm and notes on the terminology used in describing it.
 *
 * \par
 * The filter is designed to operate in streaming or non-streaming mode.  For
 * more information, see the itk::WatershedImageFilter documentation.
 *
 * \par Input
 * There is one input to this algorithm, a real-valued (scalar) itk::Image of
 * arbitrary dimension.  The input is assumed to represents a height function,
 * such as a gradient magnitude edge image.  The filter can process an image of
 * any dimension. Note that the terms ``pixel'' and ``voxel'' are
 * interchangeable in this and other watershed component class documentation.
 *
 * \par Outputs
 * There are three potential outputs of this algorithm described below.
 *
 * \par
 * The first output is a labeled image of IdentifierType integers.  This is an
 * initial segmentation and labeling that is fed into successive components of
 * the watershed algorithm.
 *
 * \par
 * The second output is a table of segment information,
 * itk::watershed::SegmentTable. This table is a record of each segment
 * numbered in the initial segmentation (output number one) with relevant
 * information needed in successive stages of the algorithm.
 *
 * \par
 * The third output is a data structure containing boundary pixel information,
 * itk::watershed::Boundary.  This data is only generated if the flag
 * DoBoundaryAnalysis is set to true and is only useful in streaming
 * applications.
 *
 * \par Parameters
 * Threshold is specified as a percentage (0.0 - 1.0) of the maximum height of
 * the image. This filter thresholds the input image to remove all values below
 * \f$ L = min + T * (max - min) \f$, where \f$ max, min \f$ are the maximum,
 * minimum values in the image and \f$ T \f$ is the threshold parameter
 * value. Values in the image less than \f$ L \f$ are raised to \f$ L \f$.
 *
 * \par
 * Thresholding minimum values in the image decreases the number of local
 * minima in the image and produces an initial segmentation with fewer
 * segments.  The assumption is that the ``shallow'' regions that this
 * thresholding eliminates are generally not of interest.
 *
 * \sa WatershedImageFilter
 * \ingroup WatershedSegmentation
 * \ingroup ITKWatersheds
 */
template< typename TInputImage >
class Segmenter:
  public ProcessObject
{
public:
  /** Standard self typedefs */
  typedef Segmenter Self;

  /** Define image types and dimensionality  */
  typedef TInputImage InputImageType;
  itkStaticConstMacro(ImageDimension, unsigned int,
                      TInputImage::ImageDimension);

  typedef Image< IdentifierType, itkGetStaticConstMacro(ImageDimension) >
  OutputImageType;
  typedef typename InputImageType::RegionType ImageRegionType;
  typedef typename InputImageType::PixelType  InputPixelType;
  typedef Boundary< InputPixelType, itkGetStaticConstMacro(ImageDimension) >
  BoundaryType;
  typedef typename BoundaryType::IndexType         BoundaryIndexType;
  typedef typename BoundaryType::FlatHashValueType BoundaryFlatHashValueType;
  typedef SegmentTable< InputPixelType >           SegmentTableType;
  typedef DataObject::Pointer                      DataObjectPointer;

  /** Methods to implement smart pointers and work with the itk object factory
   */
  typedef ProcessObject              Superclass;
  typedef SmartPointer< Self >       Pointer;
  typedef SmartPointer< const Self > ConstPointer;
  itkNewMacro(Self);
  itkTypeMacro(WatershedSegmenter, ProcessObject);

  /** Typedefs necessary on microsoft VC++ to avoid internal compiler errors */
  typedef typename InputImageType::Pointer   InputImageTypePointer;
  typedef typename OutputImageType::Pointer  OutputImageTypePointer;
  typedef typename SegmentTableType::Pointer SegmentTableTypePointer;
  typedef typename BoundaryType::Pointer     BoundaryTypePointer;

  /** A constant used in the labeling algorithm.  */
  itkStaticConstMacro(NULL_LABEL, unsigned long, 0);

  /** A constant used in the labeling algorithm.  */
  itkStaticConstMacro(NULL_FLOW, unsigned long, -1);

  /** Get/Set the input image.   */
  InputImageType * GetInputImage(void)
  {
    return itkDynamicCastInDebugMode< InputImageType * >
           ( this->ProcessObject::GetInput(0) );
  }

  void SetInputImage(InputImageType *img)
  {  this->ProcessObject::SetNthInput(0, img); }

  /** Get/Set the labeled output image.  The output image is always of
    IdentifierType integers. */
  OutputImageType * GetOutputImage(void)
  {
    return itkDynamicCastInDebugMode< OutputImageType * >
           ( this->ProcessObject::GetOutput(0) );
  }

  void SetOutputImage(OutputImageType *img)
  { this->ProcessObject::SetNthOutput(0, img);    }

  /** Get/Set the segment table.  The segment table is a table of segmentation
   * information identifying each region produced by the labeling algorithm. */
  SegmentTableType * GetSegmentTable(void)
  {
    return itkDynamicCastInDebugMode< SegmentTableType * >
           ( this->ProcessObject::GetOutput(1) );
  }

  void SetSegmentTable(SegmentTableType *s)
  { this->ProcessObject::SetNthOutput(1, s); }

  /** Returns the boundary information data necessary only for data streaming
    applications.  */
  BoundaryType * GetBoundary(void)
  {
    return itkDynamicCastInDebugMode< BoundaryType * >
           ( this->ProcessObject::GetOutput(2) );
  }

  void SetBoundary(BoundaryType *b)
  { this->ProcessObject::SetNthOutput(2, b); }

  /** Standard non-threaded pipeline execution method. */
  void GenerateData();

  /** This method is necessary until the streaming mechanisms of the Itk
   * pipeline are full fleshed out.  It is only used for streaming
   * applications.  Calling this method gets/sets the image size of the
   * complete volume being streamed.  The member variables controlled by
   * this method will not be modified by the Itk pipeline and are necessary
   * for analysis of boundaries.   */
  void SetLargestPossibleRegion(ImageRegionType reg)
  {
    if ( reg == m_LargestPossibleRegion ) { return; }
    m_LargestPossibleRegion = reg;
    this->Modified();
  }

  ImageRegionType GetLargestPossibleRegion() const
  { return m_LargestPossibleRegion; }

  /** Helper function.  Other classes may have occasion to use this. Relabels
      an image according to a table of equivalencies. */
  static void RelabelImage(OutputImageTypePointer,
                           ImageRegionType,
                           EquivalencyTable::Pointer);

  /** Standard itk::ProcessObject subclass method. */
  typedef ProcessObject::DataObjectPointerArraySizeType DataObjectPointerArraySizeType;
  using Superclass::MakeOutput;
  virtual DataObjectPointer MakeOutput(DataObjectPointerArraySizeType idx);

  /** Gets/Sets the initial label (IdentifierType integer value) used
   * by the labeling algorithm.  Only necessary for streaming applications. */
  itkSetMacro(CurrentLabel, IdentifierType);
  itkGetConstMacro(CurrentLabel, IdentifierType);

  /** Gets/Sets the input threshold. Threshold is specified as a percentage
   * (0.0 - 1.0) of the maximum height of the image. This filter thresholds the
   * input image to remove all values below \f$ L = min + T * (max -  min) \f$,
   * where \f$ max, min \f$ are the maximum, minimum values in the image and \f$
   * T \f$ is the threshold parameter value. Values in the image less than \f$ L
   * \f$ are raised to \f$ L \f$. Thresholding minimum values in the image
   * decreases the number of local minima in the image and produces an initial
   * segmentation with fewer segments.  The assumption is that the ``shallow''
   * regions that this thresholding eliminates are generally not of
   * interest. */
  itkSetClampMacro(Threshold, double, 0.0, 1.0);
  itkGetConstMacro(Threshold, double);

  /** Turns on special labeling of the boundaries for streaming applications.
   * The default value is FALSE, meaning that boundary analysis is turned
   * off.   */
  itkSetMacro(DoBoundaryAnalysis, bool);
  itkGetConstMacro(DoBoundaryAnalysis, bool);

  /** Determines whether the algorithm will sort the adjacencies in its
   * SegmentTable before returning.  Default is true.  This is an option only
   * useful for streaming applications where the sorting only needs to be done
   * after all iterations have taken place. */
  itkGetConstMacro(SortEdgeLists, bool);
  itkSetMacro(SortEdgeLists, bool);

protected:
  /** Structure storing information about image flat regions.
   * Flat regions are connected pixels of the same value.  */
  struct flat_region_t {
    IdentifierType *min_label_ptr;
    InputPixelType bounds_min;
    //    InputPixelType  bounds_max; // <-- may not be necc.
    InputPixelType value;
    bool is_on_boundary;
    flat_region_t():is_on_boundary(false) {}
  };

  /** Table for storing flat region information.  */
  typedef itksys::hash_map< IdentifierType, flat_region_t, itksys::hash< IdentifierType > >
  flat_region_table_t;

  struct connectivity_t {
    unsigned int size;
    unsigned int *index;
    typename InputImageType::OffsetType * direction;
  };

  /** Table for storing tables of edges.  This is convenient in
   * generating the segment table,  even though the edge tables
   * are stored as ordered lists.  An ``edge'' in this context
   * is synonymous with a segment ``adjacency''.   */
  typedef itksys::hash_map< IdentifierType, InputPixelType, itksys::hash< IdentifierType >
                            > edge_table_t;

  typedef itksys::hash_map< IdentifierType, edge_table_t, itksys::hash< IdentifierType >
                         > edge_table_hash_t;

  Segmenter();
  Segmenter(const Self &) {}
  virtual ~Segmenter();
  void PrintSelf(std::ostream & os, Indent indent) const;

  void operator=(const Self &) {}

  /** Constructs the connectivity list and the corresponding set of directional
   * Offset indices. */
  virtual void GenerateConnectivity();

  /** This method asks for an image region that is one pixel larger
   * at each boundary than the region being processed.  This single pixel
   * expansion represents an overlap with adjacent image chunks   */
  void GenerateInputRequestedRegion();

  void GenerateOutputRequestedRegion(DataObject *output);

  void UpdateOutputInformation();

  /**  Allocates boundary structure information and sets the
   * boundary data to null values.   */
  void InitializeBoundary();

  /** Performs a gradient descent connected component analysis
   * at the boundaries of the images that border other
   * image chunks.  Useful only in data streaming applications.   */
  void AnalyzeBoundaryFlow(InputImageTypePointer,
                           flat_region_table_t &,
                           InputPixelType);

  /** Fills boundary pixels with a specified value.  Used by labeling
   * methods to build a very high ``wall'' around the image so that
   * gradient descent does not need to watch boundaries.   */
  void BuildRetainingWall(InputImageTypePointer,
                          ImageRegionType, InputPixelType);

  /** Labels all the local minima in the image.  Also identifies and labels
   * connected  ``flat'' regions.   */
  void LabelMinima(InputImageTypePointer,
                   ImageRegionType, flat_region_table_t &,
                   InputPixelType);

  /** Follows each unlabeled pixel in the image down its path of steepest
   * descent.  Each pixel along that path is identified with the local minima
   * already labeled at the end of the path.   */
  void GradientDescent(InputImageTypePointer, ImageRegionType);

  /** Associates each flat region with a local minimum and relabels
    accordingly.  */
  void DescendFlatRegions(flat_region_table_t &, ImageRegionType);

  /** Adds entries to the output segment table for all labeled segments in the
   * image.  */
  void UpdateSegmentTable(InputImageTypePointer, ImageRegionType);

  /** Traverses each boundary and fills in the data needed for joining
   * streamed chunks of an image volume.  Only necessary for streaming
   * applications.   */
  void CollectBoundaryInformation(flat_region_table_t &);

  /** Helper function.  Thresholds low values and copies values from one image
   * into another. The source and destination regions must match in size (not
   * enforced).  For integral types, the dynamic range of the image is
   * adjusted such that the maximum value in the image is always at
   * least one less than the maximum value allowed for that data type. */
  static void Threshold(InputImageTypePointer destination,
                        InputImageTypePointer source,
                        const ImageRegionType source_region,
                        const ImageRegionType destination_region,
                        InputPixelType threshold);

  /** Helper function.  Finds the minimum and maximum values in an image. */
  static void MinMax(InputImageTypePointer img,
                     ImageRegionType region,
                     InputPixelType & min,
                     InputPixelType & max);

  /** Helper function. Finds the minimum and maximum values in an image.   */
  static void MergeFlatRegions(flat_region_table_t &, EquivalencyTable::Pointer);

  /** Helper functions for filling in regions with values   */
  static void SetInputImageValues(InputImageTypePointer img,
                                  const ImageRegionType region,
                                  InputPixelType value);

  static void SetOutputImageValues(OutputImageTypePointer img,
                                   const ImageRegionType region,
                                   IdentifierType value);

  /** This is a debugging method.  Will be removed. 11/14/01 jc   */
  //  bool CheckLabeledBoundaries();

  /** Holds generalized connectivity information for connected component
   * labeling and gradient descent analysis in pixel neighborhoods.  */
  connectivity_t m_Connectivity;

private:
  /** Helper, debug method.   */
  //  void PrintFlatRegions(flat_region_table_t &t);

  /** This is the actual data set size.  The pipeline will alter its
   *  LargestPossibleRegion, so we need to preserve it here explicitly for
   *  streaming applications*/
  ImageRegionType m_LargestPossibleRegion;

  bool            m_SortEdgeLists;
  bool            m_DoBoundaryAnalysis;
  double          m_Threshold;
  double          m_MaximumFloodLevel;
  IdentifierType  m_CurrentLabel;
};
} // end namespace watershed
} // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#include "itkWatershedSegmenter.hxx"
#endif

#endif