This file is indexed.

/usr/include/ITK-4.5/itkWatershedSegmenter.hxx is in libinsighttoolkit4-dev 4.5.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef __itkWatershedSegmenter_hxx
#define __itkWatershedSegmenter_hxx

#include "itkWatershedSegmenter.h"
#include "itkNeighborhoodAlgorithm.h"
#include "itkImageRegionIterator.h"
#include <stack>
#include <list>

namespace itk
{
namespace watershed
{

/*
  ----------------------------------------------------------------------------
  Algorithm methods
  ----------------------------------------------------------------------------
*/

template< typename TInputImage >
Segmenter< TInputImage >::~Segmenter()
{
  delete[] m_Connectivity.index;
  delete[] m_Connectivity.direction;
}

template< typename TInputImage >
void Segmenter< TInputImage >::GenerateData()
{
  //
  // Allocate all the necessary temporary data structures and variables that
  // will be used in this algorithm.  Also re-initialize some temporary data
  // structures that may have been used in previous updates of this filter.
  //
  unsigned int i;

  this->UpdateProgress(0.0);
  if ( m_DoBoundaryAnalysis == false )
    {
    this->GetSegmentTable()->Clear();
    this->SetCurrentLabel(1);
    }

  flat_region_table_t flatRegions;

  typename InputImageType::Pointer input   = this->GetInputImage();
  typename OutputImageType::Pointer output = this->GetOutputImage();
  typename BoundaryType::Pointer boundary  = this->GetBoundary();

  // ------------------------------------------------------------------------
  //
  // HERE ARE THE ASSUMPTIONS ABOUT REGION SIZES FOR NOW.  WHEN THE PIPELINE
  // FULLY SUPPORTS STREAMING, THESE WILL NEED TO BE CHANGED ACCORDINGLY.
  //
  // 1) All region sizes are equivalent.  There is no distinction among
  // regions.  The region size is assumed to be padded one pixel out along each
  // chunk face unless that face touches an actual data set boundary.
  //
  // 2) The ivar m_LargestPossibleRegion represents the actual size of the data
  // set.  This has to be set by the user since the pipeline sometimes clobbers
  // the actual LargestPossibleRegion (?).
  //
  // -------------------------------------------------------------------------

  //
  // Generate the "face" regions A that constitute our shared boundary with
  // another chunk.  Also determine which face regions B lie on a the true
  // dataset boundary.  The faces corresponding to B will need to be padded
  // out a pixel when we threshold so that we can construct the retaining wall
  // along those faces.
  //
  ImageRegionType regionToProcess       = output->GetRequestedRegion();
  ImageRegionType largestPossibleRegion = this->GetLargestPossibleRegion();
  ImageRegionType thresholdImageRegion  = regionToProcess;
  ImageRegionType thresholdLargestPossibleRegion =
    this->GetLargestPossibleRegion();

  // First we have to find the boundaries and adjust the threshold image size
  typename ImageRegionType::IndexType tidx = thresholdImageRegion.GetIndex();
  typename ImageRegionType::SizeType tsz = thresholdImageRegion.GetSize();
  typename ImageRegionType::IndexType tlidx = thresholdLargestPossibleRegion.GetIndex();
  typename ImageRegionType::SizeType tlsz = thresholdLargestPossibleRegion.GetSize();
  for ( i = 0; i < ImageDimension; ++i )
    {
    ImageRegionType reg;
    typename ImageRegionType::IndexType idx = regionToProcess.GetIndex();
    typename ImageRegionType::SizeType sz  = regionToProcess.GetSize();

    // Set LOW face
    idx[i] = regionToProcess.GetIndex()[i];
    sz[i]  = 1;
    reg.SetSize(sz);
    reg.SetIndex(idx);

    if ( reg.GetIndex()[i] == largestPossibleRegion.GetIndex()[i] )
      {
      // This is facing a true data set boundary
      tsz[i] += 1; // we need to pad our threshold image on this face
      tidx[i] -= 1;
      tlsz[i] += 1; // we need to pad our threshold image on this face
      tlidx[i] -= 1;

      boundary->SetValid(false, i, 0);
      }
    else
      {
      // This is an overlap with another data chunk in the data set
      // Mark this boundary face as valid.
      boundary->SetValid(true, i, 0);
      }

    // Set HIGH face
    idx[i] = ( regionToProcess.GetIndex()[i] + regionToProcess.GetSize()[i] ) - 1;
    reg.SetSize(sz);
    reg.SetIndex(idx);
    if ( ( reg.GetIndex()[i] + reg.GetSize()[i] )
         == ( largestPossibleRegion.GetIndex()[i]
              + largestPossibleRegion.GetSize()[i] ) )
      {
      // This is facing a true data set boundary
      tsz[i] += 1;  // we need to pad our threshold image on this face
      tlsz[i] += 1; // we need to pad our threshold image on this face
      boundary->SetValid(false, i, 1);
      }
    else
      {
      // This is an overlap with another data chunk in the data set
      // Mark this face as valid in the boundary.
      boundary->SetValid(true, i, 1);
      }
    }
  thresholdImageRegion.SetSize(tsz);
  thresholdImageRegion.SetIndex(tidx);
  thresholdLargestPossibleRegion.SetSize(tlsz);
  thresholdLargestPossibleRegion.SetIndex(tlidx);

  // Now create and allocate the threshold image.  We need a single pixel
  // border around the NxM region we are segmenting.  This means that for faces
  // that have no overlap into another chunk, we have to pad the image.
  typename InputImageType::Pointer thresholdImage = InputImageType::New();

  thresholdImage->SetLargestPossibleRegion(thresholdLargestPossibleRegion);
  thresholdImage->SetBufferedRegion(thresholdImageRegion);
  thresholdImage->SetRequestedRegion(thresholdImageRegion);
  thresholdImage->Allocate();

  // Now threshold the image. First we calculate the dynamic range of
  // the input.  Then, the threshold operation clamps the lower
  // intensity values at the prescribed threshold.  If the data is
  // integral, then any intensity at NumericTraits<>::max() is reduced
  // by one intensity value.  This allows the watershed algorithm to
  // build a barrier around the image with values above the maximum
  // intensity value which trivially stop the steepest descent search
  // for local minima without requiring expensive boundary conditions.
  //
  //
  InputPixelType minimum, maximum;
  Self::MinMax(input, regionToProcess, minimum, maximum);
  // cap the maximum in the image so that we can always define a pixel
  // value that is one greater than the maximum value in the image.
  if ( NumericTraits< InputPixelType >::is_integer
       && maximum == NumericTraits< InputPixelType >::max() )
    {
    maximum -= NumericTraits< InputPixelType >::One;
    }
  // threshold the image.
  Self::Threshold( thresholdImage, input, regionToProcess, regionToProcess,
                   static_cast< InputPixelType >( ( m_Threshold * ( maximum - minimum ) ) + minimum ) );

  //
  // Redefine the regionToProcess in terms of the threshold image.  The region
  // to  process represents all the pixels contained within the 1 pixel padded
  // boundary of the threshold image.
  //
  typename ImageRegionType::SizeType irsz;
  typename ImageRegionType::IndexType iridx;
  for ( i = 0; i < ImageDimension; ++i )
    {
    irsz[i]  = thresholdImageRegion.GetSize()[i] - 2;
    iridx[i] = thresholdImageRegion.GetIndex()[i] + 1;
    }
  regionToProcess.SetIndex(iridx);
  regionToProcess.SetSize(irsz);

  //
  // Initialize the connectivity information that will be used by the
  // segmentation algorithm.
  //
  this->GenerateConnectivity();

  //
  // Store the regionToProcess in the RequestedRegion of the threshold image.
  // We are now completely done with the input image.  The input image memory
  // can be released at this point if need be.
  //
  thresholdImage->SetRequestedRegion(regionToProcess);
  this->ReleaseInputs();

  //
  // At this point we are ready to define the output
  // buffer and allocate memory for the output image.
  //
  output->SetBufferedRegion( thresholdImage->GetBufferedRegion() );
  output->Allocate();
  Self::SetOutputImageValues(output, output->GetBufferedRegion(), Self::NULL_LABEL);

  //
  // Now we can create appropriate boundary regions for analyzing the
  // flow at the boundaries from the requested region of the threshold
  // image.
  //
  typename BoundaryType::IndexType b_idx;
  ImageRegionType reg_b;
  typename ImageRegionType::IndexType idx_b;
  typename ImageRegionType::SizeType sz_b;

  for ( b_idx.first = 0; b_idx.first < ImageDimension; ++b_idx.first )
    {
    for ( b_idx.second = 0; b_idx.second < 2; ++b_idx.second )
      {
      if ( boundary->GetValid(b_idx) == false ) { continue; }
      idx_b = thresholdImage->GetRequestedRegion().GetIndex();
      sz_b = thresholdImage->GetRequestedRegion().GetSize();

      if ( b_idx.second == 1 ) // HIGH face must adjust start index
        {
        idx_b[b_idx.first] += sz_b[b_idx.first] - 1;
        }

      sz_b[b_idx.first] = 1;

      reg_b.SetIndex(idx_b);
      reg_b.SetSize(sz_b);

      boundary->GetFace(b_idx)->SetLargestPossibleRegion(reg_b);
      boundary->GetFace(b_idx)->SetRequestedRegion(reg_b);
      boundary->GetFace(b_idx)->SetBufferedRegion(reg_b);
      boundary->GetFace(b_idx)->Allocate();
      }
    }
  this->UpdateProgress(0.1);

  //
  // Analyze the flow at the boundaries.  This method labels all the boundary
  // pixels that flow out of this chunk (either through gradient descent or
  // flat-region connectivity) and constructs the appropriate Boundary
  // data structures.
  //
  if ( m_DoBoundaryAnalysis == true )
    {
    this->InitializeBoundary();
    this->AnalyzeBoundaryFlow(thresholdImage, flatRegions, maximum
                              + NumericTraits< InputPixelType >::One);
    }

  this->UpdateProgress(0.2);

  //
  // Build a ``retaining wall'' around the image so that gradient descent
  // analysis can be done without worrying about boundaries.
  //
  // All overlap boundary information will be overwritten, but is no longer
  // needed now.
  //
  this->BuildRetainingWall(thresholdImage,
                           thresholdImage->GetBufferedRegion(),
                           maximum + NumericTraits< InputPixelType >::One);

  //
  // Label all the local minima pixels in the image.  This function also
  // labels flat regions, defined as regions where connected pixels all have
  // the same value.
  //
  this->LabelMinima(thresholdImage, thresholdImage->GetRequestedRegion(),
                    flatRegions, maximum + NumericTraits< InputPixelType >::One);
  this->UpdateProgress(0.3);

  this->GradientDescent( thresholdImage, thresholdImage->GetRequestedRegion() );
  this->UpdateProgress(0.4);

  this->DescendFlatRegions( flatRegions, thresholdImage->GetRequestedRegion() );
  this->UpdateProgress(0.5);

  this->UpdateSegmentTable( thresholdImage, thresholdImage->GetRequestedRegion() );
  this->UpdateProgress(0.6);

  if ( m_DoBoundaryAnalysis == true )
          {  this->CollectBoundaryInformation(flatRegions); }
  this->UpdateProgress(0.7);

  if ( m_SortEdgeLists == true )
          {  this->GetSegmentTable()->SortEdgeLists(); }
  this->UpdateProgress(0.8);

  this->GetSegmentTable()->SetMaximumDepth(maximum - minimum);
  this->UpdateProgress(1.0);
}

template< typename TInputImage >
void Segmenter< TInputImage >
::CollectBoundaryInformation(flat_region_table_t & flatRegions)
{
  typename OutputImageType::Pointer output = this->GetOutputImage();
  typename BoundaryType::Pointer boundary  = this->GetBoundary();

  ImageRegionIterator< typename BoundaryType::face_t > faceIt;
  ImageRegionIterator< OutputImageType >                   labelIt;

  typename BoundaryType::face_t::Pointer face;
  typedef typename BoundaryType::flat_hash_t flats_t;
  typename BoundaryType::flat_hash_t           * flats;
  typename BoundaryType::flat_hash_t::iterator flats_it;
  typename BoundaryType::flat_region_t flr;
  typename flat_region_table_t::iterator flrt_it;

  typename BoundaryType::IndexType idx;
  ImageRegionType region;

  for ( idx.first = 0; idx.first < ImageDimension; ( idx.first )++ )
    {
    for ( idx.second = 0; idx.second < 2; ( idx.second )++ )
      {
      if ( boundary->GetValid(idx) == false ) { continue; }

      face  = boundary->GetFace(idx);
      flats = boundary->GetFlatHash(idx);
      region = face->GetRequestedRegion();

      // Grab all the labels of the boundary pixels.
      faceIt = ImageRegionIterator< typename BoundaryType::face_t >(face,
                                                                        region);
      labelIt = ImageRegionIterator< OutputImageType >(output, region);
      faceIt.GoToBegin();
      labelIt.GoToBegin();
      while ( !faceIt.IsAtEnd() )
        {
        faceIt.Value(). label = labelIt.Get();

        // Is this a flat region that flows out?
        flrt_it = flatRegions.find( labelIt.Get() );
        if ( faceIt.Get().flow != NULL_FLOW
             && flrt_it != flatRegions.end() )
          {
          // Have we already entered this
          // flat region into the boundary?
          flats_it = flats->find( labelIt.Get() );
          if ( flats_it == flats->end() )  // NO
            {
            flr.bounds_min = ( *flrt_it ).second.bounds_min;
            flr.min_label  = *( ( *flrt_it ).second.min_label_ptr );
            flr.value      = ( *flrt_it ).second.value;
            flr.offset_list.push_back(
              face->ComputeOffset( faceIt.GetIndex() ) );
            flats->insert(
              BoundaryFlatHashValueType(labelIt.Get(), flr) );
            flr.offset_list.clear();
            }
          else // YES
            {
            ( *flats_it ).second.offset_list.push_back( face->ComputeOffset( faceIt.GetIndex() ) );
            }
          }

        ++faceIt;
        ++labelIt;
        }
      }
    }
}

template< typename TInputImage >
void Segmenter< TInputImage >
::InitializeBoundary()
{
  ImageRegionIterator< typename BoundaryType::face_t > faceIt;
  typename BoundaryType::face_t::Pointer face;
  typename BoundaryType::face_pixel_t fps;
  BoundaryIndexType idx;

  fps.flow  = NULL_FLOW;
  fps.label = NULL_LABEL;

  for ( idx.first = 0; idx.first < ImageDimension; ++( idx.first ) )
    {
    for ( idx.second = 0; idx.second < 2; ++( idx.second ) )
      {
      if ( this->GetBoundary()->GetValid(idx) == false ) { continue; }
      this->GetBoundary()->GetFlatHash(idx)->clear();
      face = this->GetBoundary()->GetFace(idx);
      faceIt = ImageRegionIterator< typename BoundaryType::face_t >
                 ( face, face->GetBufferedRegion() );
      for ( faceIt.GoToBegin(); !faceIt.IsAtEnd(); ++faceIt )
        {
        faceIt.Set(fps);
        }
      }
    }
}

template< typename TInputImage >
void Segmenter< TInputImage >
::AnalyzeBoundaryFlow(InputImageTypePointer thresholdImage,
                      flat_region_table_t & flatRegions,
                      InputPixelType max)
{
  //
  // NOTE: For ease of initial implementation, this method does
  // not support arbitrary connectivity across boundaries (yet). 10-8-01 jc
  //
  unsigned int nCenter, i, nPos, cPos;
  bool         isSteepest;

  ConstNeighborhoodIterator< InputImageType >              searchIt;
  NeighborhoodIterator< OutputImageType >                  labelIt;
  ImageRegionIterator< typename BoundaryType::face_t > faceIt;

  BoundaryIndexType idx;
  ImageRegionType   region;
  typename ConstNeighborhoodIterator< InputImageType >::RadiusType rad;

  typename BoundaryType::face_pixel_t fps;
  flat_region_t tempFlatRegion;

  typename OutputImageType::Pointer output   = this->GetOutputImage();
  typename BoundaryType::Pointer boundary = this->GetBoundary();

  for ( i = 0; i < ImageDimension; ++i )
    {
    rad[i] = 1;
    }
  fps.label = NULL_LABEL;

  EquivalencyTable::Pointer eqTable = EquivalencyTable::New();

  // Process each boundary region.
  for ( idx.first = 0; idx.first < ImageDimension; ++( idx.first ) )
    {
    for ( idx.second = 0; idx.second < 2; ++( idx.second ) )
      {
      // Skip irrelevant boundaries
      if ( boundary->GetValid(idx) == false ) { continue; }

      typename BoundaryType::face_t::Pointer face = boundary->GetFace(idx);
      region = face->GetRequestedRegion();

      searchIt =
        ConstNeighborhoodIterator< InputImageType >(rad, thresholdImage, region);
      labelIt = NeighborhoodIterator< OutputImageType >(rad, output, region);
      faceIt  = ImageRegionIterator< typename BoundaryType::face_t >(face, region);

      nCenter = searchIt.Size() / 2;
      searchIt.GoToBegin();
      labelIt.GoToBegin();

      if ( ( idx ).second == 0 )
        {
        // Low face
        cPos = m_Connectivity.index[( idx ).first];
        }
      else
        {
        // High face
        cPos = m_Connectivity.index[( ImageDimension - 1 )
                                    + ( ImageDimension - ( idx ).first )];
        }

      while ( !searchIt.IsAtEnd() )
        {
        // Is this a flat connection?
        if ( searchIt.GetPixel(nCenter) == searchIt.GetPixel(cPos) )
          {
          // Fill in the boundary flow information.
          // Labels will be collected later.
          fps.flow   = static_cast< short >( cPos );
          faceIt.Set(fps);

          // Are we touching flat regions
          // that have already been labeled?
          bool _labeled    = false;
          bool _connected  = false;
          for ( i = 0; i < m_Connectivity.size; i++ )
            {
            nPos = m_Connectivity.index[i];
            if (   searchIt.GetPixel(nCenter) == searchIt.GetPixel(nPos)
                   && labelIt.GetPixel(nPos) != Self::NULL_LABEL
                   && labelIt.GetPixel(nPos) != labelIt.GetPixel(nCenter)
                   )
              {
              _connected = true;
              if ( _labeled == false )
                {
                labelIt.SetPixel( nCenter,
                                  labelIt.GetPixel(nPos) );
                _labeled = true;
                }
              else
                {
                eqTable->Add( labelIt.GetPixel(nCenter), labelIt.GetPixel(nPos) );
                }
              }
            }
          if ( _connected == false ) // Add a new flat region.
            {
            labelIt.SetPixel(nCenter, m_CurrentLabel);

            // Add a flat region to the (global) flat region table
            tempFlatRegion.bounds_min    = max;
            tempFlatRegion.min_label_ptr = output->GetBufferPointer()
                                           + output->ComputeOffset( labelIt.GetIndex() );
            tempFlatRegion.value         = searchIt.GetPixel(nCenter);
            tempFlatRegion.is_on_boundary = true;
            flatRegions[m_CurrentLabel]  = tempFlatRegion;

            m_CurrentLabel++;
            }
          }
        else  // Is cPos the path of steepest descent?
          {
          if ( searchIt.GetPixel(cPos) < searchIt.GetPixel(nCenter) )
            {
            isSteepest = true;
            for ( i = 0; i < m_Connectivity.size; i++ )
              {
              nPos = m_Connectivity.index[i];
              if ( searchIt.GetPixel(nPos) < searchIt.GetPixel(cPos) )
                {
                isSteepest = false;
                break;
                }
              }
            }
          else { isSteepest = false; }

          if ( isSteepest == true )
            {
            // Label this pixel. It will be safely treated as a local
            // minimum by the rest of the segmentation algorithm.
            labelIt.SetPixel(nCenter, m_CurrentLabel);

            // Add the connectivity information
            // to the boundary data structure.
            fps.flow  = static_cast< short >( cPos );
            faceIt.Set(fps);

            // Since we've labeled this pixel, we need to check to
            // make sure this is not also a flat region.  If it is,
            // then it must be entered into the flat region table
            // or we could have problems later on.
            for ( i = 0; i < m_Connectivity.size; i++ )
              {
              nPos = m_Connectivity.index[i];
              if ( searchIt.GetPixel(nPos) ==
                   searchIt.GetPixel(nCenter) )
                {
                tempFlatRegion.bounds_min = max;
                tempFlatRegion.min_label_ptr =
                  output->GetBufferPointer()
                  + output->ComputeOffset( labelIt.GetIndex() );
                tempFlatRegion.value =
                  searchIt.GetPixel(nCenter);
                tempFlatRegion.is_on_boundary = false;
                flatRegions[m_CurrentLabel] = tempFlatRegion;
                break;
                }
              }
            m_CurrentLabel++;
            }
          }

        ++searchIt;
        ++labelIt;
        ++faceIt;
        }
      }
    }

  eqTable->Flatten();

  // Now relabel any equivalent regions in the boundaries.
  for ( idx.first = 0; idx.first < ImageDimension; ++( idx.first ) )
    {
    for ( idx.second = 0; idx.second < 2; ++( idx.second ) )
      {
      // Skip irrelevant boundaries
      if ( boundary->GetValid(idx) == false ) { continue; }

      typename BoundaryType::face_t::Pointer face = boundary->GetFace(idx);
      region = face->GetRequestedRegion();

      Self::RelabelImage(output, region, eqTable);
      }
    }

  // Merge the flat regions in the table
  Self::MergeFlatRegions(flatRegions, eqTable);
}

template< typename TInputImage >
void Segmenter< TInputImage >
::GenerateConnectivity()
{
  unsigned int i, j, nSize, nCenter, stride;
  int          d;

  //
  // Creates city-block style connectivity.  4-Neighbors in 2D.  6-Neighbors in
  // 3D, etc...  Order of creation MUST be lowest index to highest index in the
  // neighborhood.  I.e. for 4 connectivity,
  //
  //     * 1 *
  //     2 * 3
  //     * 4 *
  //
  // Algorithms assume this order to the connectivity.
  //
  typename ConstNeighborhoodIterator< InputImageType >::RadiusType rad;
  for ( i = 0; i < ImageDimension; ++i )
    {
    rad[i] = 1;
    }
  ConstNeighborhoodIterator< InputImageType > it( rad, this->GetInputImage(),
                                                  this->GetInputImage()->GetRequestedRegion() );
  nSize   = it.Size();
  nCenter = nSize >> 1;

  for ( i = 0; i < m_Connectivity.size; i++ ) // initialize move list
    {
    for ( j = 0; j < ImageDimension; j++ )
      {
      m_Connectivity.direction[i][j] = 0;
      }
    }
  i = 0;
  for ( d = ImageDimension - 1; d >= 0; d-- )
    {
    stride = it.GetStride(d);
    m_Connectivity.index[i] = nCenter - stride;
    m_Connectivity.direction[i][d] = -1;
    i++;
    }
  for ( d = 0; d < static_cast< int >( ImageDimension ); d++ )
    {
    stride = it.GetStride(d);
    m_Connectivity.index[i] = nCenter + stride;
    m_Connectivity.direction[i][d] = 1;
    i++;
    }
}

template< typename TInputImage >
void Segmenter< TInputImage >
::LabelMinima(InputImageTypePointer img, ImageRegionType region,
              typename Self::flat_region_table_t & flatRegions, InputPixelType Max)
{
  unsigned int   i, nSize, nCenter, nPos = 0;
  bool           foundSinglePixelMinimum, foundFlatRegion;
  InputPixelType maxValue = Max;

  flat_region_t tempFlatRegion;

  typename flat_region_table_t::iterator flatPtr;
  InputPixelType            currentValue;
  EquivalencyTable::Pointer equivalentLabels = EquivalencyTable::New();

  typename OutputImageType::Pointer output = this->GetOutputImage();

  // Set up the iterators.
  typename ConstNeighborhoodIterator< InputImageType >::RadiusType rad;
  for ( i = 0; i < ImageDimension; ++i )
    {
    rad[i] = 1;
    }
  ConstNeighborhoodIterator< InputImageType > searchIt(rad, img, region);
  NeighborhoodIterator< OutputImageType >     labelIt(rad, output, region);
  nSize   = searchIt.Size();
  nCenter = nSize >> 1;

  // Sweep through the images.  Label all local minima
  // and record information for all the flat regions.
  for ( searchIt.GoToBegin(), labelIt.GoToBegin();
        !searchIt.IsAtEnd(); ++searchIt, ++labelIt )
    {
    foundSinglePixelMinimum = true;
    foundFlatRegion = false;

    // If this pixel has been labeled already,
    // skip directly to the next iteration.
    if ( labelIt.GetPixel(nCenter) != Self::NULL_LABEL ) { continue; }

    // Compare current pixel value with its neighbors.
    currentValue = searchIt.GetPixel(nCenter);

    for ( i = 0; i < m_Connectivity.size; ++i )
      {
      nPos = m_Connectivity.index[i];
      if ( currentValue == searchIt.GetPixel(nPos) )
        {
        foundFlatRegion  = true;
        break;
        }
      else if ( currentValue > searchIt.GetPixel(nPos) )
        {
        foundSinglePixelMinimum = false;
        }
      }

    if ( foundFlatRegion )
      {
      if ( labelIt.GetPixel(nPos) != Self::NULL_LABEL ) // If the flat region is
                                                        // already
        {                                               // labeled, label this
                                                        // to match.
        labelIt.SetPixel( nCenter, labelIt.GetPixel(nPos) );
        }
      else // Add a new flat region to the table.
        {  // Initialize its contents.
        labelIt.SetPixel(nCenter,  m_CurrentLabel);
        nPos = m_Connectivity.index[0];

        tempFlatRegion.bounds_min        = maxValue;
        tempFlatRegion.min_label_ptr     = labelIt[nPos];
        tempFlatRegion.value             = currentValue;
        flatRegions[m_CurrentLabel]      = tempFlatRegion;
        m_CurrentLabel = m_CurrentLabel + 1;
        }

      // While we're at it, check to see if we have just linked two flat
      // regions with the same height value.  Save that info for later.
      for ( i++; i < m_Connectivity.size; ++i )
        {
        nPos = m_Connectivity.index[i];
        if (   searchIt.GetPixel(nCenter) == searchIt.GetPixel(nPos)
               && labelIt.GetPixel(nPos) != Self::NULL_LABEL
               && labelIt.GetPixel(nPos) != labelIt.GetPixel(nCenter)
               )
          {
          equivalentLabels->Add( labelIt.GetPixel(nCenter),
                                 labelIt.GetPixel(nPos) );
          }
        }
      }
    else if ( foundSinglePixelMinimum )
      {
      labelIt.SetPixel(nCenter,  m_CurrentLabel);
      m_CurrentLabel = m_CurrentLabel + 1;
      }
    }

  // Merge the flat regions that we identified as connected components.
  Self::MergeFlatRegions(flatRegions, equivalentLabels);

  // Relabel the image with the merged regions.
  Self::RelabelImage(output, region, equivalentLabels);

  equivalentLabels->Clear();

  // Now make another pass to establish the
  // boundary values for the flat regions.
  for ( searchIt.GoToBegin(), labelIt.GoToBegin();
        !searchIt.IsAtEnd(); ++searchIt, ++labelIt )
    {
    flatPtr = flatRegions.find( labelIt.GetPixel(nCenter) );
    if ( flatPtr != flatRegions.end() ) // If we are in a flat region
      {                                 // Search the connectivity neighborhood
                                        // for lesser boundary pixels.
      for ( i = 0; i < m_Connectivity.size; ++i )
        {
        nPos = m_Connectivity.index[i];

        if  ( labelIt.GetPixel(nPos) != labelIt.GetPixel(nCenter)
              && searchIt.GetPixel(nPos) < ( *flatPtr ).second.bounds_min )
          { // If this is a boundary pixel && has a lesser value than
            // the currently recorded value...
          ( *flatPtr ).second.bounds_min = searchIt.GetPixel(nPos);
          ( *flatPtr ).second.min_label_ptr = labelIt[nPos];
          }
        if ( searchIt.GetPixel(nCenter) == searchIt.GetPixel(nPos) )
          {
          if ( labelIt.GetPixel(nPos) != NULL_LABEL )
            {
            // Pick up any equivalencies we missed before.
            equivalentLabels->Add( labelIt.GetPixel(nCenter),
                                   labelIt.GetPixel(nPos) );
            }
          // If the following is encountered, it means that there is a
          // logic flaw in the first pass of this algorithm where flat
          // regions are initially detected and linked.
#ifndef NDEBUG
          else { itkDebugMacro("An unexpected but non-fatal error has occurred."); }
#endif
          }
        }
      }
    }

  // Merge the flat regions that we identified as connected components.
  Self::MergeFlatRegions(flatRegions, equivalentLabels);

  // Relabel the image with the merged regions.
  Self::RelabelImage(output, region, equivalentLabels);
}

template< typename TInputImage >
void Segmenter< TInputImage >
::GradientDescent(InputImageTypePointer img,
                  ImageRegionType region)
{
  typename OutputImageType::Pointer output = this->GetOutputImage();

  InputPixelType minVal;
  unsigned int   i, nPos;
  typename InputImageType::OffsetType moveIndex;
  IdentifierType                 newLabel;
  std::stack< IdentifierType * > updateStack;

  //
  // Set up our iterators.
  //
  typename ConstNeighborhoodIterator< InputImageType >::RadiusType rad;
  typename NeighborhoodIterator< OutputImageType >::RadiusType zeroRad;
  for ( i = 0; i < ImageDimension; ++i )
    {
    rad[i] = 1;
    zeroRad[i] = 0;
    }
  ConstNeighborhoodIterator< InputImageType >
  valueIt(rad, img, region);
  NeighborhoodIterator< OutputImageType >
                                         labelIt(zeroRad, output, region);
  ImageRegionIterator< OutputImageType > it(output, region);

  //
  // Sweep through the image and trace all unlabeled
  // pixels to a labeled region
  //
  for ( it.GoToBegin(); !it.IsAtEnd(); ++it )
    {
    if ( it.Get() == NULL_LABEL )
      {
      valueIt.SetLocation( it.GetIndex() );
      labelIt.SetLocation( it.GetIndex() );
      newLabel = NULL_LABEL;               // Follow the path of steep-
      while ( newLabel == NULL_LABEL )     // est descent until a label
        {                                  // is found.
        updateStack.push( labelIt.GetCenterPointer() );
        minVal = valueIt.GetPixel(m_Connectivity.index[0]);
        moveIndex = m_Connectivity.direction[0];
        for ( unsigned int ii = 1; ii < m_Connectivity.size; ++ii )
          {
          nPos = m_Connectivity.index[ii];
          if ( valueIt.GetPixel(nPos) < minVal )
            {
            minVal = valueIt.GetPixel(nPos);
            moveIndex = m_Connectivity.direction[ii];
            }
          }
        valueIt += moveIndex;
        labelIt += moveIndex;
        newLabel = labelIt.GetPixel(0);
        }

      while ( !updateStack.empty() ) // Update all the pixels we've traversed
        {
        *( updateStack.top() ) = newLabel;
        updateStack.pop();
        }
      }
    }
}

template< typename TInputImage >
void Segmenter< TInputImage >
::DescendFlatRegions(flat_region_table_t & flatRegionTable,
                     ImageRegionType imageRegion)
{
  typename OutputImageType::Pointer output = this->GetOutputImage();
  // Assumes all pixels are labeled in the image.  Steps through the flat
  // regions and equates each one with the label at its lowest boundary
  // point. Flat basins are preserved as their own regions. The output image is
  // relabeled to reflect these equivalencies.
  EquivalencyTable::Pointer equivalentLabels = EquivalencyTable::New();

  for ( typename flat_region_table_t::const_iterator region = flatRegionTable.begin();
        region != flatRegionTable.end(); ++region )
    {
    if ( ( ( *region ).second.bounds_min < ( *region ).second.value )
         && ( !( *region ).second.is_on_boundary ) )
      {
      equivalentLabels->Add( ( *region ).first, *( ( *region ).second.min_label_ptr ) );
      }
    }

  equivalentLabels->Flatten();
  Self::RelabelImage(output, imageRegion, equivalentLabels);
}

template< typename TInputImage >
void Segmenter< TInputImage >
::UpdateSegmentTable(InputImageTypePointer input, ImageRegionType region)
{
  edge_table_hash_t edgeHash;
  edge_table_t      tempEdgeTable;

  typename edge_table_hash_t::iterator edge_table_entry_ptr;
  typename edge_table_t::iterator edge_ptr;

  unsigned int i, nPos;
  typename NeighborhoodIterator< OutputImageType >::RadiusType hoodRadius;
  typename SegmentTableType::segment_t * segment_ptr;
  typename SegmentTableType::segment_t temp_segment;
  IdentifierType segment_label;

  InputPixelType lowest_edge;

  // Grab the data we need.
  typename OutputImageType::Pointer output    = this->GetOutputImage();
  typename SegmentTableType::Pointer segments = this->GetSegmentTable();

  // Set up some iterators.
  for ( i = 0; i < ImageDimension; i++ )
    {
    hoodRadius[i] = 1;
    }
  ConstNeighborhoodIterator< InputImageType > searchIt(hoodRadius, input, region);
  NeighborhoodIterator< OutputImageType >     labelIt(hoodRadius, output, region);

  IdentifierType hoodCenter = searchIt.Size() >> 1;

  for ( searchIt.GoToBegin(), labelIt.GoToBegin(); !searchIt.IsAtEnd();
        ++searchIt, ++labelIt )
    {
    segment_label = labelIt.GetPixel(hoodCenter);

    // Find the segment corresponding to this label
    // and update its minimum value if necessary.
    segment_ptr = segments->Lookup(segment_label);
    edge_table_entry_ptr = edgeHash.find(segment_label);
    if ( segment_ptr == 0 ) // This segment not yet identified.
      {                     // So add it to the table.
      temp_segment.min = searchIt.GetPixel(hoodCenter);
      segments->Add(segment_label, temp_segment);
      typedef typename edge_table_hash_t::value_type ValueType;
      edgeHash.insert( ValueType(segment_label,
                                 tempEdgeTable) );

      edge_table_entry_ptr = edgeHash.find(segment_label);
      }
    else if ( searchIt.GetPixel(hoodCenter) < segment_ptr->min )
      {
      segment_ptr->min = searchIt.GetPixel(hoodCenter);
      }

    // Look up each neighboring segment in this segment's edge table.
    // If an edge exists, compare (and reset) the minimum edge value.
    // Note that edges are located *between* two adjacent pixels and
    // the value is taken to be the maximum of the two adjacent pixel
    // values.
    for ( i = 0; i < m_Connectivity.size; ++i )
      {
      nPos = m_Connectivity.index[i];
      if ( labelIt.GetPixel(nPos) != segment_label
           && labelIt.GetPixel(nPos) != NULL_LABEL )
        {
        if ( searchIt.GetPixel(nPos) < searchIt.GetPixel(hoodCenter) )
          {
          lowest_edge = searchIt.GetPixel(hoodCenter); // We want the
          }
        else
          {
          lowest_edge = searchIt.GetPixel(nPos);       // max of the
          }
        // adjacent pixels

        edge_ptr = ( *edge_table_entry_ptr ).second.find( labelIt.GetPixel(nPos) );
        if ( edge_ptr == ( *edge_table_entry_ptr ).second.end() )
          {     // This edge has not been identified yet.
          typedef typename edge_table_t::value_type ValueType;
          ( *edge_table_entry_ptr ).second.insert(
            ValueType(labelIt.GetPixel(nPos), lowest_edge) );
          }
        else if ( lowest_edge < ( *edge_ptr ).second )
          {
          ( *edge_ptr ).second = lowest_edge;
          }
        }
      }
    }

  //
  // Copy all of the edge tables into the edge lists of the
  // segment table.
  //
  IdentifierType listsz;
  typename SegmentTableType::edge_list_t::iterator list_ptr;
  for ( edge_table_entry_ptr = edgeHash.begin();
        edge_table_entry_ptr != edgeHash.end();
        edge_table_entry_ptr++ )
    {
    // Lookup the corresponding segment entry
    segment_ptr = segments->Lookup( ( *edge_table_entry_ptr ).first );
    if ( segment_ptr == 0 )
      {
      itkGenericExceptionMacro (<< "UpdateSegmentTable:: An unexpected and fatal error has occurred.");
      }

    // Copy into the segment list
    listsz = static_cast< IdentifierType >( ( *edge_table_entry_ptr ).second.size() );
    segment_ptr->edge_list.resize(listsz);
    edge_ptr = ( *edge_table_entry_ptr ).second.begin();
    list_ptr = segment_ptr->edge_list.begin();
    while ( edge_ptr != ( *edge_table_entry_ptr ).second.end() )
      {
      list_ptr->label = ( *edge_ptr ).first;
      list_ptr->height = ( *edge_ptr ).second;
      edge_ptr++;
      list_ptr++;
      }

    // Clean up memory as we go
    ( *edge_table_entry_ptr ).second.clear();
    }
}

template< typename TInputImage >
void Segmenter< TInputImage >
::BuildRetainingWall(InputImageTypePointer img,
                     ImageRegionType region,
                     InputPixelType value)
{
  unsigned int i;

  typename ImageRegionType::SizeType sz;
  typename ImageRegionType::IndexType idx;
  ImageRegionType reg;

  // Loop through the dimensions and populate the LOW and HIGH faces regions.
  for ( i = 0; i < ImageDimension; ++i )
    {
    idx = region.GetIndex();       // LOW face
    sz  = region.GetSize();
    sz[i] = 1;
    reg.SetIndex(idx);
    reg.SetSize(sz);
    Segmenter::SetInputImageValues(img, reg, value);
    idx[i] = region.GetSize()[i] + region.GetIndex()[i] - 1;  // HIGH face
    reg.SetIndex(idx);
    Segmenter::SetInputImageValues(img, reg, value);
    }
}

/*
  ----------------------------------------------------------------------------
  Algorithm helper methods and debugging methods
  ----------------------------------------------------------------------------
*/
template< typename TInputImage >
void Segmenter< TInputImage >
::SetInputImageValues(InputImageTypePointer img,
                      ImageRegionType region,
                      InputPixelType value)
{
  ImageRegionIterator< InputImageType > it(img, region);
  it.GoToBegin();
  while ( !it.IsAtEnd() )
    {
    it.Set(value);
    ++it;
    }
}

template< typename TInputImage >
void Segmenter< TInputImage >
::SetOutputImageValues(OutputImageTypePointer img,
                       ImageRegionType region,
                       IdentifierType value)
{
  ImageRegionIterator< OutputImageType > it(img, region);
  it.GoToBegin();
  while ( !it.IsAtEnd() )
    {
    it.Set(value);
    ++it;
    }
}

template< typename TInputImage >
void Segmenter< TInputImage >
::MinMax(InputImageTypePointer img, ImageRegionType region,
         InputPixelType & min, InputPixelType & max)
{
  ImageRegionIterator< InputImageType > it(img, region);
  it.GoToBegin();
  min = it.Value();
  max = it.Value();
  while ( !it.IsAtEnd() )
    {
    if ( it.Get() > max ) { max = it.Get(); }
    if ( it.Get() < min ) { min = it.Get(); }
    ++it;
    }
}

template< typename TInputImage >
void Segmenter< TInputImage >
::MergeFlatRegions(flat_region_table_t & regions,
                   EquivalencyTable::Pointer eqTable)
{
  // Note that the labels must have no interdependencies.  That is,
  // every key must map to a value that is not itself a key in the
  // table. This means that you must always merge label->first with
  // label->second (a to b). EquivalencyTable can be converted to this
  // format with its Flatten() method.
  eqTable->Flatten();

  typename flat_region_table_t::iterator a, b;
  for ( EquivalencyTable::ConstIterator it = eqTable->Begin();
        it != eqTable->End(); ++it )
    {
    if ( ( ( a = regions.find( ( *it ).first ) ) == regions.end() )
         || ( ( b = regions.find( ( *it ).second ) ) == regions.end() ) )
      {
      itkGenericExceptionMacro (<< "MergeFlatRegions:: An unexpected and fatal error has occurred.");
      }

    if ( ( *a ).second.bounds_min < ( *b ).second.bounds_min )
      {
      ( *b ).second.bounds_min = ( *a ).second.bounds_min;
      ( *b ).second.min_label_ptr = ( *a ).second.min_label_ptr;
      }

    regions.erase(a);
    }
}

template< typename TInputImage >
void Segmenter< TInputImage >
::RelabelImage(OutputImageTypePointer img,
               ImageRegionType region,
               EquivalencyTable::Pointer eqTable)
{
  eqTable->Flatten();

  IdentifierType                         temp;
  ImageRegionIterator< OutputImageType > it(img, region);

  it.GoToBegin();
  while ( !it.IsAtEnd() )
    {
    temp = eqTable->Lookup( it.Get() );
    if ( temp != it.Get() )  { it.Set(temp); }
    ++it;
    }
}

template< typename TInputImage >
void Segmenter< TInputImage >::Threshold(InputImageTypePointer destination,
                                         InputImageTypePointer source,
                                         const ImageRegionType source_region,
                                         const ImageRegionType destination_region,
                                         InputPixelType threshold)
{
  ImageRegionIterator< InputImageType > dIt(destination, destination_region);
  ImageRegionIterator< InputImageType > sIt(source, source_region);

  dIt.GoToBegin();
  sIt.GoToBegin();

  // Assumes that source_region and destination region are the same size.  Does
  // no checking!!
  if ( NumericTraits< InputPixelType >::is_integer )
    {
    // integral data type, if any pixel is at the maximum possible
    // value for the data type, then drop the value by one intensity
    // value. This the watershed algorithm to construct a "barrier" or
    // "wall" around the image that will stop the watershed without
    // requiring a expensive boundary condition checks.
    while ( !dIt.IsAtEnd() )
      {
      InputPixelType tmp = sIt.Get();
      if ( tmp < threshold )
        {
        dIt.Set(threshold);
        }
      else if ( tmp == NumericTraits< InputPixelType >::max() )
        {
        dIt.Set(tmp - NumericTraits< InputPixelType >::One);
        }
      else
        {
        dIt.Set(tmp);
        }
      ++dIt;
      ++sIt;
      }
    }
  else
    {
    // floating point data, no need to worry about overflow
    while ( !dIt.IsAtEnd() )
      {
      if ( sIt.Get() < threshold )
        {
        dIt.Set(threshold);
        }
      else
        {
        dIt.Set( sIt.Get() );
        }
      ++dIt;
      ++sIt;
      }
    }
}

/*
  ----------------------------------------------------------------------------
  Pipeline methods
  ----------------------------------------------------------------------------
*/
template< typename TInputImage >
typename Segmenter< TInputImage >::DataObjectPointer
Segmenter< TInputImage >
::MakeOutput(DataObjectPointerArraySizeType idx)
{
  if ( idx == 0 )
    {
    return OutputImageType::New().GetPointer();
    }
  else if ( idx == 1 )
    {
    return SegmentTableType::New().GetPointer();
    }
  else if ( idx == 2 )
    {
    return BoundaryType::New().GetPointer();
    }
  else { return 0; }
}

template< typename TInputImage >
void
Segmenter< TInputImage >::UpdateOutputInformation()
{
  unsigned int i;

  // call the superclass' implementation of this method
  Superclass::UpdateOutputInformation();

  // get pointers to the input and output
  typename InputImageType::Pointer inputPtr = this->GetInputImage();
  typename OutputImageType::Pointer outputPtr = this->GetOutputImage();

  if ( !inputPtr || !outputPtr )
    {
    return;
    }
  // we need to compute the output spacing, the output image size, and the
  // output image start index
  const typename InputImageType::SizeType &   inputSize =
    inputPtr->GetLargestPossibleRegion().GetSize();
  const typename InputImageType::IndexType &  inputStartIndex =
    inputPtr->GetLargestPossibleRegion().GetIndex();

  typename OutputImageType::SizeType outputSize;
  typename OutputImageType::IndexType outputStartIndex;

  for ( i = 0; i < OutputImageType::ImageDimension; i++ )
    {
    outputSize[i] = inputSize[i];
    outputStartIndex[i]  = inputStartIndex[i];
    }

  typename OutputImageType::RegionType outputLargestPossibleRegion;
  outputLargestPossibleRegion.SetSize(outputSize);
  outputLargestPossibleRegion.SetIndex(outputStartIndex);

  outputPtr->SetLargestPossibleRegion(outputLargestPossibleRegion);
}

template< typename TInputImage >
void Segmenter< TInputImage >::GenerateInputRequestedRegion()
{
  // call the superclass' implementation of this method
  Superclass::GenerateInputRequestedRegion();

  // get pointers to the input and output
  typename InputImageType::Pointer inputPtr  = this->GetInputImage();
  typename OutputImageType::Pointer outputPtr = this->GetOutputImage();

  if ( !inputPtr || !outputPtr )
    {
    return;
    }

  //
  // FOR NOW WE'LL JUST SET THE INPUT REGION TO THE OUTPUT REGION
  // AND OVERRIDE THIS LATER
  //
  inputPtr->SetRequestedRegion( outputPtr->GetRequestedRegion() );
}

template< typename TInputImage >
void
Segmenter< TInputImage >
::GenerateOutputRequestedRegion(DataObject *output)
{
  // Only the Image output need to be propagated through.
  // No choice but to use RTTI here.
  ImageBase< ImageDimension > *imgData;
  ImageBase< ImageDimension > *op;
  imgData = dynamic_cast< ImageBase< ImageDimension > * >( output );
  typename TInputImage::RegionType c_reg;

  if ( imgData )
    {
    std::vector< ProcessObject::DataObjectPointer >::size_type idx;
    for ( idx = 0; idx < this->GetNumberOfIndexedOutputs(); ++idx )
      {
      if ( this->GetOutput(idx) && this->GetOutput(idx) != output )
        {
        op = dynamic_cast< ImageBase< ImageDimension >
                           * >( this->GetOutput(idx) );

        if ( op ) { this->GetOutput(idx)->SetRequestedRegion(output); }
        }
      }
    }
}

template< typename TInputImage >
Segmenter< TInputImage >
::Segmenter()
{
  m_Threshold = 0.0;
  m_MaximumFloodLevel = 1.0;
  m_CurrentLabel = 1;
  m_DoBoundaryAnalysis = false;
  m_SortEdgeLists = true;
  m_Connectivity.direction = 0;
  m_Connectivity.index = 0;
  typename OutputImageType::Pointer img =
    static_cast< OutputImageType * >( this->MakeOutput(0).GetPointer() );
  typename SegmentTableType::Pointer st =
    static_cast< SegmentTableType * >( this->MakeOutput(1).GetPointer() );
  typename BoundaryType::Pointer bd =
    static_cast< BoundaryType * >( this->MakeOutput(2).GetPointer() );
  this->SetNumberOfRequiredOutputs(3);
  this->ProcessObject::SetNthOutput( 0, img.GetPointer() );
  this->ProcessObject::SetNthOutput( 1, st.GetPointer() );
  this->ProcessObject::SetNthOutput( 2, bd.GetPointer() );

  // Allocate memory for connectivity
  m_Connectivity.size = 2 * ImageDimension;
  m_Connectivity.index = new unsigned int[m_Connectivity.size];
  m_Connectivity.direction =
    new typename InputImageType::OffsetType[m_Connectivity.size];
}

template< typename TInputImage >
void
Segmenter< TInputImage >
::PrintSelf(std::ostream & os, Indent indent) const
{
  Superclass::PrintSelf(os, indent);
  os << indent << "SortEdgeLists: " << m_SortEdgeLists << std::endl;
  os << indent << "DoBoundaryAnalysis: " << m_DoBoundaryAnalysis << std::endl;
  os << indent << "Threshold: " << m_Threshold << std::endl;
  os << indent << "MaximumFloodLevel: " << m_MaximumFloodLevel << std::endl;
  os << indent << "CurrentLabel: " << m_CurrentLabel << std::endl;
}
} // end namespace watershed
} // end namespace itk

#endif