/usr/include/ITK-4.5/itkWatershedSegmenter.hxx is in libinsighttoolkit4-dev 4.5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 | /*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef __itkWatershedSegmenter_hxx
#define __itkWatershedSegmenter_hxx
#include "itkWatershedSegmenter.h"
#include "itkNeighborhoodAlgorithm.h"
#include "itkImageRegionIterator.h"
#include <stack>
#include <list>
namespace itk
{
namespace watershed
{
/*
----------------------------------------------------------------------------
Algorithm methods
----------------------------------------------------------------------------
*/
template< typename TInputImage >
Segmenter< TInputImage >::~Segmenter()
{
delete[] m_Connectivity.index;
delete[] m_Connectivity.direction;
}
template< typename TInputImage >
void Segmenter< TInputImage >::GenerateData()
{
//
// Allocate all the necessary temporary data structures and variables that
// will be used in this algorithm. Also re-initialize some temporary data
// structures that may have been used in previous updates of this filter.
//
unsigned int i;
this->UpdateProgress(0.0);
if ( m_DoBoundaryAnalysis == false )
{
this->GetSegmentTable()->Clear();
this->SetCurrentLabel(1);
}
flat_region_table_t flatRegions;
typename InputImageType::Pointer input = this->GetInputImage();
typename OutputImageType::Pointer output = this->GetOutputImage();
typename BoundaryType::Pointer boundary = this->GetBoundary();
// ------------------------------------------------------------------------
//
// HERE ARE THE ASSUMPTIONS ABOUT REGION SIZES FOR NOW. WHEN THE PIPELINE
// FULLY SUPPORTS STREAMING, THESE WILL NEED TO BE CHANGED ACCORDINGLY.
//
// 1) All region sizes are equivalent. There is no distinction among
// regions. The region size is assumed to be padded one pixel out along each
// chunk face unless that face touches an actual data set boundary.
//
// 2) The ivar m_LargestPossibleRegion represents the actual size of the data
// set. This has to be set by the user since the pipeline sometimes clobbers
// the actual LargestPossibleRegion (?).
//
// -------------------------------------------------------------------------
//
// Generate the "face" regions A that constitute our shared boundary with
// another chunk. Also determine which face regions B lie on a the true
// dataset boundary. The faces corresponding to B will need to be padded
// out a pixel when we threshold so that we can construct the retaining wall
// along those faces.
//
ImageRegionType regionToProcess = output->GetRequestedRegion();
ImageRegionType largestPossibleRegion = this->GetLargestPossibleRegion();
ImageRegionType thresholdImageRegion = regionToProcess;
ImageRegionType thresholdLargestPossibleRegion =
this->GetLargestPossibleRegion();
// First we have to find the boundaries and adjust the threshold image size
typename ImageRegionType::IndexType tidx = thresholdImageRegion.GetIndex();
typename ImageRegionType::SizeType tsz = thresholdImageRegion.GetSize();
typename ImageRegionType::IndexType tlidx = thresholdLargestPossibleRegion.GetIndex();
typename ImageRegionType::SizeType tlsz = thresholdLargestPossibleRegion.GetSize();
for ( i = 0; i < ImageDimension; ++i )
{
ImageRegionType reg;
typename ImageRegionType::IndexType idx = regionToProcess.GetIndex();
typename ImageRegionType::SizeType sz = regionToProcess.GetSize();
// Set LOW face
idx[i] = regionToProcess.GetIndex()[i];
sz[i] = 1;
reg.SetSize(sz);
reg.SetIndex(idx);
if ( reg.GetIndex()[i] == largestPossibleRegion.GetIndex()[i] )
{
// This is facing a true data set boundary
tsz[i] += 1; // we need to pad our threshold image on this face
tidx[i] -= 1;
tlsz[i] += 1; // we need to pad our threshold image on this face
tlidx[i] -= 1;
boundary->SetValid(false, i, 0);
}
else
{
// This is an overlap with another data chunk in the data set
// Mark this boundary face as valid.
boundary->SetValid(true, i, 0);
}
// Set HIGH face
idx[i] = ( regionToProcess.GetIndex()[i] + regionToProcess.GetSize()[i] ) - 1;
reg.SetSize(sz);
reg.SetIndex(idx);
if ( ( reg.GetIndex()[i] + reg.GetSize()[i] )
== ( largestPossibleRegion.GetIndex()[i]
+ largestPossibleRegion.GetSize()[i] ) )
{
// This is facing a true data set boundary
tsz[i] += 1; // we need to pad our threshold image on this face
tlsz[i] += 1; // we need to pad our threshold image on this face
boundary->SetValid(false, i, 1);
}
else
{
// This is an overlap with another data chunk in the data set
// Mark this face as valid in the boundary.
boundary->SetValid(true, i, 1);
}
}
thresholdImageRegion.SetSize(tsz);
thresholdImageRegion.SetIndex(tidx);
thresholdLargestPossibleRegion.SetSize(tlsz);
thresholdLargestPossibleRegion.SetIndex(tlidx);
// Now create and allocate the threshold image. We need a single pixel
// border around the NxM region we are segmenting. This means that for faces
// that have no overlap into another chunk, we have to pad the image.
typename InputImageType::Pointer thresholdImage = InputImageType::New();
thresholdImage->SetLargestPossibleRegion(thresholdLargestPossibleRegion);
thresholdImage->SetBufferedRegion(thresholdImageRegion);
thresholdImage->SetRequestedRegion(thresholdImageRegion);
thresholdImage->Allocate();
// Now threshold the image. First we calculate the dynamic range of
// the input. Then, the threshold operation clamps the lower
// intensity values at the prescribed threshold. If the data is
// integral, then any intensity at NumericTraits<>::max() is reduced
// by one intensity value. This allows the watershed algorithm to
// build a barrier around the image with values above the maximum
// intensity value which trivially stop the steepest descent search
// for local minima without requiring expensive boundary conditions.
//
//
InputPixelType minimum, maximum;
Self::MinMax(input, regionToProcess, minimum, maximum);
// cap the maximum in the image so that we can always define a pixel
// value that is one greater than the maximum value in the image.
if ( NumericTraits< InputPixelType >::is_integer
&& maximum == NumericTraits< InputPixelType >::max() )
{
maximum -= NumericTraits< InputPixelType >::One;
}
// threshold the image.
Self::Threshold( thresholdImage, input, regionToProcess, regionToProcess,
static_cast< InputPixelType >( ( m_Threshold * ( maximum - minimum ) ) + minimum ) );
//
// Redefine the regionToProcess in terms of the threshold image. The region
// to process represents all the pixels contained within the 1 pixel padded
// boundary of the threshold image.
//
typename ImageRegionType::SizeType irsz;
typename ImageRegionType::IndexType iridx;
for ( i = 0; i < ImageDimension; ++i )
{
irsz[i] = thresholdImageRegion.GetSize()[i] - 2;
iridx[i] = thresholdImageRegion.GetIndex()[i] + 1;
}
regionToProcess.SetIndex(iridx);
regionToProcess.SetSize(irsz);
//
// Initialize the connectivity information that will be used by the
// segmentation algorithm.
//
this->GenerateConnectivity();
//
// Store the regionToProcess in the RequestedRegion of the threshold image.
// We are now completely done with the input image. The input image memory
// can be released at this point if need be.
//
thresholdImage->SetRequestedRegion(regionToProcess);
this->ReleaseInputs();
//
// At this point we are ready to define the output
// buffer and allocate memory for the output image.
//
output->SetBufferedRegion( thresholdImage->GetBufferedRegion() );
output->Allocate();
Self::SetOutputImageValues(output, output->GetBufferedRegion(), Self::NULL_LABEL);
//
// Now we can create appropriate boundary regions for analyzing the
// flow at the boundaries from the requested region of the threshold
// image.
//
typename BoundaryType::IndexType b_idx;
ImageRegionType reg_b;
typename ImageRegionType::IndexType idx_b;
typename ImageRegionType::SizeType sz_b;
for ( b_idx.first = 0; b_idx.first < ImageDimension; ++b_idx.first )
{
for ( b_idx.second = 0; b_idx.second < 2; ++b_idx.second )
{
if ( boundary->GetValid(b_idx) == false ) { continue; }
idx_b = thresholdImage->GetRequestedRegion().GetIndex();
sz_b = thresholdImage->GetRequestedRegion().GetSize();
if ( b_idx.second == 1 ) // HIGH face must adjust start index
{
idx_b[b_idx.first] += sz_b[b_idx.first] - 1;
}
sz_b[b_idx.first] = 1;
reg_b.SetIndex(idx_b);
reg_b.SetSize(sz_b);
boundary->GetFace(b_idx)->SetLargestPossibleRegion(reg_b);
boundary->GetFace(b_idx)->SetRequestedRegion(reg_b);
boundary->GetFace(b_idx)->SetBufferedRegion(reg_b);
boundary->GetFace(b_idx)->Allocate();
}
}
this->UpdateProgress(0.1);
//
// Analyze the flow at the boundaries. This method labels all the boundary
// pixels that flow out of this chunk (either through gradient descent or
// flat-region connectivity) and constructs the appropriate Boundary
// data structures.
//
if ( m_DoBoundaryAnalysis == true )
{
this->InitializeBoundary();
this->AnalyzeBoundaryFlow(thresholdImage, flatRegions, maximum
+ NumericTraits< InputPixelType >::One);
}
this->UpdateProgress(0.2);
//
// Build a ``retaining wall'' around the image so that gradient descent
// analysis can be done without worrying about boundaries.
//
// All overlap boundary information will be overwritten, but is no longer
// needed now.
//
this->BuildRetainingWall(thresholdImage,
thresholdImage->GetBufferedRegion(),
maximum + NumericTraits< InputPixelType >::One);
//
// Label all the local minima pixels in the image. This function also
// labels flat regions, defined as regions where connected pixels all have
// the same value.
//
this->LabelMinima(thresholdImage, thresholdImage->GetRequestedRegion(),
flatRegions, maximum + NumericTraits< InputPixelType >::One);
this->UpdateProgress(0.3);
this->GradientDescent( thresholdImage, thresholdImage->GetRequestedRegion() );
this->UpdateProgress(0.4);
this->DescendFlatRegions( flatRegions, thresholdImage->GetRequestedRegion() );
this->UpdateProgress(0.5);
this->UpdateSegmentTable( thresholdImage, thresholdImage->GetRequestedRegion() );
this->UpdateProgress(0.6);
if ( m_DoBoundaryAnalysis == true )
{ this->CollectBoundaryInformation(flatRegions); }
this->UpdateProgress(0.7);
if ( m_SortEdgeLists == true )
{ this->GetSegmentTable()->SortEdgeLists(); }
this->UpdateProgress(0.8);
this->GetSegmentTable()->SetMaximumDepth(maximum - minimum);
this->UpdateProgress(1.0);
}
template< typename TInputImage >
void Segmenter< TInputImage >
::CollectBoundaryInformation(flat_region_table_t & flatRegions)
{
typename OutputImageType::Pointer output = this->GetOutputImage();
typename BoundaryType::Pointer boundary = this->GetBoundary();
ImageRegionIterator< typename BoundaryType::face_t > faceIt;
ImageRegionIterator< OutputImageType > labelIt;
typename BoundaryType::face_t::Pointer face;
typedef typename BoundaryType::flat_hash_t flats_t;
typename BoundaryType::flat_hash_t * flats;
typename BoundaryType::flat_hash_t::iterator flats_it;
typename BoundaryType::flat_region_t flr;
typename flat_region_table_t::iterator flrt_it;
typename BoundaryType::IndexType idx;
ImageRegionType region;
for ( idx.first = 0; idx.first < ImageDimension; ( idx.first )++ )
{
for ( idx.second = 0; idx.second < 2; ( idx.second )++ )
{
if ( boundary->GetValid(idx) == false ) { continue; }
face = boundary->GetFace(idx);
flats = boundary->GetFlatHash(idx);
region = face->GetRequestedRegion();
// Grab all the labels of the boundary pixels.
faceIt = ImageRegionIterator< typename BoundaryType::face_t >(face,
region);
labelIt = ImageRegionIterator< OutputImageType >(output, region);
faceIt.GoToBegin();
labelIt.GoToBegin();
while ( !faceIt.IsAtEnd() )
{
faceIt.Value(). label = labelIt.Get();
// Is this a flat region that flows out?
flrt_it = flatRegions.find( labelIt.Get() );
if ( faceIt.Get().flow != NULL_FLOW
&& flrt_it != flatRegions.end() )
{
// Have we already entered this
// flat region into the boundary?
flats_it = flats->find( labelIt.Get() );
if ( flats_it == flats->end() ) // NO
{
flr.bounds_min = ( *flrt_it ).second.bounds_min;
flr.min_label = *( ( *flrt_it ).second.min_label_ptr );
flr.value = ( *flrt_it ).second.value;
flr.offset_list.push_back(
face->ComputeOffset( faceIt.GetIndex() ) );
flats->insert(
BoundaryFlatHashValueType(labelIt.Get(), flr) );
flr.offset_list.clear();
}
else // YES
{
( *flats_it ).second.offset_list.push_back( face->ComputeOffset( faceIt.GetIndex() ) );
}
}
++faceIt;
++labelIt;
}
}
}
}
template< typename TInputImage >
void Segmenter< TInputImage >
::InitializeBoundary()
{
ImageRegionIterator< typename BoundaryType::face_t > faceIt;
typename BoundaryType::face_t::Pointer face;
typename BoundaryType::face_pixel_t fps;
BoundaryIndexType idx;
fps.flow = NULL_FLOW;
fps.label = NULL_LABEL;
for ( idx.first = 0; idx.first < ImageDimension; ++( idx.first ) )
{
for ( idx.second = 0; idx.second < 2; ++( idx.second ) )
{
if ( this->GetBoundary()->GetValid(idx) == false ) { continue; }
this->GetBoundary()->GetFlatHash(idx)->clear();
face = this->GetBoundary()->GetFace(idx);
faceIt = ImageRegionIterator< typename BoundaryType::face_t >
( face, face->GetBufferedRegion() );
for ( faceIt.GoToBegin(); !faceIt.IsAtEnd(); ++faceIt )
{
faceIt.Set(fps);
}
}
}
}
template< typename TInputImage >
void Segmenter< TInputImage >
::AnalyzeBoundaryFlow(InputImageTypePointer thresholdImage,
flat_region_table_t & flatRegions,
InputPixelType max)
{
//
// NOTE: For ease of initial implementation, this method does
// not support arbitrary connectivity across boundaries (yet). 10-8-01 jc
//
unsigned int nCenter, i, nPos, cPos;
bool isSteepest;
ConstNeighborhoodIterator< InputImageType > searchIt;
NeighborhoodIterator< OutputImageType > labelIt;
ImageRegionIterator< typename BoundaryType::face_t > faceIt;
BoundaryIndexType idx;
ImageRegionType region;
typename ConstNeighborhoodIterator< InputImageType >::RadiusType rad;
typename BoundaryType::face_pixel_t fps;
flat_region_t tempFlatRegion;
typename OutputImageType::Pointer output = this->GetOutputImage();
typename BoundaryType::Pointer boundary = this->GetBoundary();
for ( i = 0; i < ImageDimension; ++i )
{
rad[i] = 1;
}
fps.label = NULL_LABEL;
EquivalencyTable::Pointer eqTable = EquivalencyTable::New();
// Process each boundary region.
for ( idx.first = 0; idx.first < ImageDimension; ++( idx.first ) )
{
for ( idx.second = 0; idx.second < 2; ++( idx.second ) )
{
// Skip irrelevant boundaries
if ( boundary->GetValid(idx) == false ) { continue; }
typename BoundaryType::face_t::Pointer face = boundary->GetFace(idx);
region = face->GetRequestedRegion();
searchIt =
ConstNeighborhoodIterator< InputImageType >(rad, thresholdImage, region);
labelIt = NeighborhoodIterator< OutputImageType >(rad, output, region);
faceIt = ImageRegionIterator< typename BoundaryType::face_t >(face, region);
nCenter = searchIt.Size() / 2;
searchIt.GoToBegin();
labelIt.GoToBegin();
if ( ( idx ).second == 0 )
{
// Low face
cPos = m_Connectivity.index[( idx ).first];
}
else
{
// High face
cPos = m_Connectivity.index[( ImageDimension - 1 )
+ ( ImageDimension - ( idx ).first )];
}
while ( !searchIt.IsAtEnd() )
{
// Is this a flat connection?
if ( searchIt.GetPixel(nCenter) == searchIt.GetPixel(cPos) )
{
// Fill in the boundary flow information.
// Labels will be collected later.
fps.flow = static_cast< short >( cPos );
faceIt.Set(fps);
// Are we touching flat regions
// that have already been labeled?
bool _labeled = false;
bool _connected = false;
for ( i = 0; i < m_Connectivity.size; i++ )
{
nPos = m_Connectivity.index[i];
if ( searchIt.GetPixel(nCenter) == searchIt.GetPixel(nPos)
&& labelIt.GetPixel(nPos) != Self::NULL_LABEL
&& labelIt.GetPixel(nPos) != labelIt.GetPixel(nCenter)
)
{
_connected = true;
if ( _labeled == false )
{
labelIt.SetPixel( nCenter,
labelIt.GetPixel(nPos) );
_labeled = true;
}
else
{
eqTable->Add( labelIt.GetPixel(nCenter), labelIt.GetPixel(nPos) );
}
}
}
if ( _connected == false ) // Add a new flat region.
{
labelIt.SetPixel(nCenter, m_CurrentLabel);
// Add a flat region to the (global) flat region table
tempFlatRegion.bounds_min = max;
tempFlatRegion.min_label_ptr = output->GetBufferPointer()
+ output->ComputeOffset( labelIt.GetIndex() );
tempFlatRegion.value = searchIt.GetPixel(nCenter);
tempFlatRegion.is_on_boundary = true;
flatRegions[m_CurrentLabel] = tempFlatRegion;
m_CurrentLabel++;
}
}
else // Is cPos the path of steepest descent?
{
if ( searchIt.GetPixel(cPos) < searchIt.GetPixel(nCenter) )
{
isSteepest = true;
for ( i = 0; i < m_Connectivity.size; i++ )
{
nPos = m_Connectivity.index[i];
if ( searchIt.GetPixel(nPos) < searchIt.GetPixel(cPos) )
{
isSteepest = false;
break;
}
}
}
else { isSteepest = false; }
if ( isSteepest == true )
{
// Label this pixel. It will be safely treated as a local
// minimum by the rest of the segmentation algorithm.
labelIt.SetPixel(nCenter, m_CurrentLabel);
// Add the connectivity information
// to the boundary data structure.
fps.flow = static_cast< short >( cPos );
faceIt.Set(fps);
// Since we've labeled this pixel, we need to check to
// make sure this is not also a flat region. If it is,
// then it must be entered into the flat region table
// or we could have problems later on.
for ( i = 0; i < m_Connectivity.size; i++ )
{
nPos = m_Connectivity.index[i];
if ( searchIt.GetPixel(nPos) ==
searchIt.GetPixel(nCenter) )
{
tempFlatRegion.bounds_min = max;
tempFlatRegion.min_label_ptr =
output->GetBufferPointer()
+ output->ComputeOffset( labelIt.GetIndex() );
tempFlatRegion.value =
searchIt.GetPixel(nCenter);
tempFlatRegion.is_on_boundary = false;
flatRegions[m_CurrentLabel] = tempFlatRegion;
break;
}
}
m_CurrentLabel++;
}
}
++searchIt;
++labelIt;
++faceIt;
}
}
}
eqTable->Flatten();
// Now relabel any equivalent regions in the boundaries.
for ( idx.first = 0; idx.first < ImageDimension; ++( idx.first ) )
{
for ( idx.second = 0; idx.second < 2; ++( idx.second ) )
{
// Skip irrelevant boundaries
if ( boundary->GetValid(idx) == false ) { continue; }
typename BoundaryType::face_t::Pointer face = boundary->GetFace(idx);
region = face->GetRequestedRegion();
Self::RelabelImage(output, region, eqTable);
}
}
// Merge the flat regions in the table
Self::MergeFlatRegions(flatRegions, eqTable);
}
template< typename TInputImage >
void Segmenter< TInputImage >
::GenerateConnectivity()
{
unsigned int i, j, nSize, nCenter, stride;
int d;
//
// Creates city-block style connectivity. 4-Neighbors in 2D. 6-Neighbors in
// 3D, etc... Order of creation MUST be lowest index to highest index in the
// neighborhood. I.e. for 4 connectivity,
//
// * 1 *
// 2 * 3
// * 4 *
//
// Algorithms assume this order to the connectivity.
//
typename ConstNeighborhoodIterator< InputImageType >::RadiusType rad;
for ( i = 0; i < ImageDimension; ++i )
{
rad[i] = 1;
}
ConstNeighborhoodIterator< InputImageType > it( rad, this->GetInputImage(),
this->GetInputImage()->GetRequestedRegion() );
nSize = it.Size();
nCenter = nSize >> 1;
for ( i = 0; i < m_Connectivity.size; i++ ) // initialize move list
{
for ( j = 0; j < ImageDimension; j++ )
{
m_Connectivity.direction[i][j] = 0;
}
}
i = 0;
for ( d = ImageDimension - 1; d >= 0; d-- )
{
stride = it.GetStride(d);
m_Connectivity.index[i] = nCenter - stride;
m_Connectivity.direction[i][d] = -1;
i++;
}
for ( d = 0; d < static_cast< int >( ImageDimension ); d++ )
{
stride = it.GetStride(d);
m_Connectivity.index[i] = nCenter + stride;
m_Connectivity.direction[i][d] = 1;
i++;
}
}
template< typename TInputImage >
void Segmenter< TInputImage >
::LabelMinima(InputImageTypePointer img, ImageRegionType region,
typename Self::flat_region_table_t & flatRegions, InputPixelType Max)
{
unsigned int i, nSize, nCenter, nPos = 0;
bool foundSinglePixelMinimum, foundFlatRegion;
InputPixelType maxValue = Max;
flat_region_t tempFlatRegion;
typename flat_region_table_t::iterator flatPtr;
InputPixelType currentValue;
EquivalencyTable::Pointer equivalentLabels = EquivalencyTable::New();
typename OutputImageType::Pointer output = this->GetOutputImage();
// Set up the iterators.
typename ConstNeighborhoodIterator< InputImageType >::RadiusType rad;
for ( i = 0; i < ImageDimension; ++i )
{
rad[i] = 1;
}
ConstNeighborhoodIterator< InputImageType > searchIt(rad, img, region);
NeighborhoodIterator< OutputImageType > labelIt(rad, output, region);
nSize = searchIt.Size();
nCenter = nSize >> 1;
// Sweep through the images. Label all local minima
// and record information for all the flat regions.
for ( searchIt.GoToBegin(), labelIt.GoToBegin();
!searchIt.IsAtEnd(); ++searchIt, ++labelIt )
{
foundSinglePixelMinimum = true;
foundFlatRegion = false;
// If this pixel has been labeled already,
// skip directly to the next iteration.
if ( labelIt.GetPixel(nCenter) != Self::NULL_LABEL ) { continue; }
// Compare current pixel value with its neighbors.
currentValue = searchIt.GetPixel(nCenter);
for ( i = 0; i < m_Connectivity.size; ++i )
{
nPos = m_Connectivity.index[i];
if ( currentValue == searchIt.GetPixel(nPos) )
{
foundFlatRegion = true;
break;
}
else if ( currentValue > searchIt.GetPixel(nPos) )
{
foundSinglePixelMinimum = false;
}
}
if ( foundFlatRegion )
{
if ( labelIt.GetPixel(nPos) != Self::NULL_LABEL ) // If the flat region is
// already
{ // labeled, label this
// to match.
labelIt.SetPixel( nCenter, labelIt.GetPixel(nPos) );
}
else // Add a new flat region to the table.
{ // Initialize its contents.
labelIt.SetPixel(nCenter, m_CurrentLabel);
nPos = m_Connectivity.index[0];
tempFlatRegion.bounds_min = maxValue;
tempFlatRegion.min_label_ptr = labelIt[nPos];
tempFlatRegion.value = currentValue;
flatRegions[m_CurrentLabel] = tempFlatRegion;
m_CurrentLabel = m_CurrentLabel + 1;
}
// While we're at it, check to see if we have just linked two flat
// regions with the same height value. Save that info for later.
for ( i++; i < m_Connectivity.size; ++i )
{
nPos = m_Connectivity.index[i];
if ( searchIt.GetPixel(nCenter) == searchIt.GetPixel(nPos)
&& labelIt.GetPixel(nPos) != Self::NULL_LABEL
&& labelIt.GetPixel(nPos) != labelIt.GetPixel(nCenter)
)
{
equivalentLabels->Add( labelIt.GetPixel(nCenter),
labelIt.GetPixel(nPos) );
}
}
}
else if ( foundSinglePixelMinimum )
{
labelIt.SetPixel(nCenter, m_CurrentLabel);
m_CurrentLabel = m_CurrentLabel + 1;
}
}
// Merge the flat regions that we identified as connected components.
Self::MergeFlatRegions(flatRegions, equivalentLabels);
// Relabel the image with the merged regions.
Self::RelabelImage(output, region, equivalentLabels);
equivalentLabels->Clear();
// Now make another pass to establish the
// boundary values for the flat regions.
for ( searchIt.GoToBegin(), labelIt.GoToBegin();
!searchIt.IsAtEnd(); ++searchIt, ++labelIt )
{
flatPtr = flatRegions.find( labelIt.GetPixel(nCenter) );
if ( flatPtr != flatRegions.end() ) // If we are in a flat region
{ // Search the connectivity neighborhood
// for lesser boundary pixels.
for ( i = 0; i < m_Connectivity.size; ++i )
{
nPos = m_Connectivity.index[i];
if ( labelIt.GetPixel(nPos) != labelIt.GetPixel(nCenter)
&& searchIt.GetPixel(nPos) < ( *flatPtr ).second.bounds_min )
{ // If this is a boundary pixel && has a lesser value than
// the currently recorded value...
( *flatPtr ).second.bounds_min = searchIt.GetPixel(nPos);
( *flatPtr ).second.min_label_ptr = labelIt[nPos];
}
if ( searchIt.GetPixel(nCenter) == searchIt.GetPixel(nPos) )
{
if ( labelIt.GetPixel(nPos) != NULL_LABEL )
{
// Pick up any equivalencies we missed before.
equivalentLabels->Add( labelIt.GetPixel(nCenter),
labelIt.GetPixel(nPos) );
}
// If the following is encountered, it means that there is a
// logic flaw in the first pass of this algorithm where flat
// regions are initially detected and linked.
#ifndef NDEBUG
else { itkDebugMacro("An unexpected but non-fatal error has occurred."); }
#endif
}
}
}
}
// Merge the flat regions that we identified as connected components.
Self::MergeFlatRegions(flatRegions, equivalentLabels);
// Relabel the image with the merged regions.
Self::RelabelImage(output, region, equivalentLabels);
}
template< typename TInputImage >
void Segmenter< TInputImage >
::GradientDescent(InputImageTypePointer img,
ImageRegionType region)
{
typename OutputImageType::Pointer output = this->GetOutputImage();
InputPixelType minVal;
unsigned int i, nPos;
typename InputImageType::OffsetType moveIndex;
IdentifierType newLabel;
std::stack< IdentifierType * > updateStack;
//
// Set up our iterators.
//
typename ConstNeighborhoodIterator< InputImageType >::RadiusType rad;
typename NeighborhoodIterator< OutputImageType >::RadiusType zeroRad;
for ( i = 0; i < ImageDimension; ++i )
{
rad[i] = 1;
zeroRad[i] = 0;
}
ConstNeighborhoodIterator< InputImageType >
valueIt(rad, img, region);
NeighborhoodIterator< OutputImageType >
labelIt(zeroRad, output, region);
ImageRegionIterator< OutputImageType > it(output, region);
//
// Sweep through the image and trace all unlabeled
// pixels to a labeled region
//
for ( it.GoToBegin(); !it.IsAtEnd(); ++it )
{
if ( it.Get() == NULL_LABEL )
{
valueIt.SetLocation( it.GetIndex() );
labelIt.SetLocation( it.GetIndex() );
newLabel = NULL_LABEL; // Follow the path of steep-
while ( newLabel == NULL_LABEL ) // est descent until a label
{ // is found.
updateStack.push( labelIt.GetCenterPointer() );
minVal = valueIt.GetPixel(m_Connectivity.index[0]);
moveIndex = m_Connectivity.direction[0];
for ( unsigned int ii = 1; ii < m_Connectivity.size; ++ii )
{
nPos = m_Connectivity.index[ii];
if ( valueIt.GetPixel(nPos) < minVal )
{
minVal = valueIt.GetPixel(nPos);
moveIndex = m_Connectivity.direction[ii];
}
}
valueIt += moveIndex;
labelIt += moveIndex;
newLabel = labelIt.GetPixel(0);
}
while ( !updateStack.empty() ) // Update all the pixels we've traversed
{
*( updateStack.top() ) = newLabel;
updateStack.pop();
}
}
}
}
template< typename TInputImage >
void Segmenter< TInputImage >
::DescendFlatRegions(flat_region_table_t & flatRegionTable,
ImageRegionType imageRegion)
{
typename OutputImageType::Pointer output = this->GetOutputImage();
// Assumes all pixels are labeled in the image. Steps through the flat
// regions and equates each one with the label at its lowest boundary
// point. Flat basins are preserved as their own regions. The output image is
// relabeled to reflect these equivalencies.
EquivalencyTable::Pointer equivalentLabels = EquivalencyTable::New();
for ( typename flat_region_table_t::const_iterator region = flatRegionTable.begin();
region != flatRegionTable.end(); ++region )
{
if ( ( ( *region ).second.bounds_min < ( *region ).second.value )
&& ( !( *region ).second.is_on_boundary ) )
{
equivalentLabels->Add( ( *region ).first, *( ( *region ).second.min_label_ptr ) );
}
}
equivalentLabels->Flatten();
Self::RelabelImage(output, imageRegion, equivalentLabels);
}
template< typename TInputImage >
void Segmenter< TInputImage >
::UpdateSegmentTable(InputImageTypePointer input, ImageRegionType region)
{
edge_table_hash_t edgeHash;
edge_table_t tempEdgeTable;
typename edge_table_hash_t::iterator edge_table_entry_ptr;
typename edge_table_t::iterator edge_ptr;
unsigned int i, nPos;
typename NeighborhoodIterator< OutputImageType >::RadiusType hoodRadius;
typename SegmentTableType::segment_t * segment_ptr;
typename SegmentTableType::segment_t temp_segment;
IdentifierType segment_label;
InputPixelType lowest_edge;
// Grab the data we need.
typename OutputImageType::Pointer output = this->GetOutputImage();
typename SegmentTableType::Pointer segments = this->GetSegmentTable();
// Set up some iterators.
for ( i = 0; i < ImageDimension; i++ )
{
hoodRadius[i] = 1;
}
ConstNeighborhoodIterator< InputImageType > searchIt(hoodRadius, input, region);
NeighborhoodIterator< OutputImageType > labelIt(hoodRadius, output, region);
IdentifierType hoodCenter = searchIt.Size() >> 1;
for ( searchIt.GoToBegin(), labelIt.GoToBegin(); !searchIt.IsAtEnd();
++searchIt, ++labelIt )
{
segment_label = labelIt.GetPixel(hoodCenter);
// Find the segment corresponding to this label
// and update its minimum value if necessary.
segment_ptr = segments->Lookup(segment_label);
edge_table_entry_ptr = edgeHash.find(segment_label);
if ( segment_ptr == 0 ) // This segment not yet identified.
{ // So add it to the table.
temp_segment.min = searchIt.GetPixel(hoodCenter);
segments->Add(segment_label, temp_segment);
typedef typename edge_table_hash_t::value_type ValueType;
edgeHash.insert( ValueType(segment_label,
tempEdgeTable) );
edge_table_entry_ptr = edgeHash.find(segment_label);
}
else if ( searchIt.GetPixel(hoodCenter) < segment_ptr->min )
{
segment_ptr->min = searchIt.GetPixel(hoodCenter);
}
// Look up each neighboring segment in this segment's edge table.
// If an edge exists, compare (and reset) the minimum edge value.
// Note that edges are located *between* two adjacent pixels and
// the value is taken to be the maximum of the two adjacent pixel
// values.
for ( i = 0; i < m_Connectivity.size; ++i )
{
nPos = m_Connectivity.index[i];
if ( labelIt.GetPixel(nPos) != segment_label
&& labelIt.GetPixel(nPos) != NULL_LABEL )
{
if ( searchIt.GetPixel(nPos) < searchIt.GetPixel(hoodCenter) )
{
lowest_edge = searchIt.GetPixel(hoodCenter); // We want the
}
else
{
lowest_edge = searchIt.GetPixel(nPos); // max of the
}
// adjacent pixels
edge_ptr = ( *edge_table_entry_ptr ).second.find( labelIt.GetPixel(nPos) );
if ( edge_ptr == ( *edge_table_entry_ptr ).second.end() )
{ // This edge has not been identified yet.
typedef typename edge_table_t::value_type ValueType;
( *edge_table_entry_ptr ).second.insert(
ValueType(labelIt.GetPixel(nPos), lowest_edge) );
}
else if ( lowest_edge < ( *edge_ptr ).second )
{
( *edge_ptr ).second = lowest_edge;
}
}
}
}
//
// Copy all of the edge tables into the edge lists of the
// segment table.
//
IdentifierType listsz;
typename SegmentTableType::edge_list_t::iterator list_ptr;
for ( edge_table_entry_ptr = edgeHash.begin();
edge_table_entry_ptr != edgeHash.end();
edge_table_entry_ptr++ )
{
// Lookup the corresponding segment entry
segment_ptr = segments->Lookup( ( *edge_table_entry_ptr ).first );
if ( segment_ptr == 0 )
{
itkGenericExceptionMacro (<< "UpdateSegmentTable:: An unexpected and fatal error has occurred.");
}
// Copy into the segment list
listsz = static_cast< IdentifierType >( ( *edge_table_entry_ptr ).second.size() );
segment_ptr->edge_list.resize(listsz);
edge_ptr = ( *edge_table_entry_ptr ).second.begin();
list_ptr = segment_ptr->edge_list.begin();
while ( edge_ptr != ( *edge_table_entry_ptr ).second.end() )
{
list_ptr->label = ( *edge_ptr ).first;
list_ptr->height = ( *edge_ptr ).second;
edge_ptr++;
list_ptr++;
}
// Clean up memory as we go
( *edge_table_entry_ptr ).second.clear();
}
}
template< typename TInputImage >
void Segmenter< TInputImage >
::BuildRetainingWall(InputImageTypePointer img,
ImageRegionType region,
InputPixelType value)
{
unsigned int i;
typename ImageRegionType::SizeType sz;
typename ImageRegionType::IndexType idx;
ImageRegionType reg;
// Loop through the dimensions and populate the LOW and HIGH faces regions.
for ( i = 0; i < ImageDimension; ++i )
{
idx = region.GetIndex(); // LOW face
sz = region.GetSize();
sz[i] = 1;
reg.SetIndex(idx);
reg.SetSize(sz);
Segmenter::SetInputImageValues(img, reg, value);
idx[i] = region.GetSize()[i] + region.GetIndex()[i] - 1; // HIGH face
reg.SetIndex(idx);
Segmenter::SetInputImageValues(img, reg, value);
}
}
/*
----------------------------------------------------------------------------
Algorithm helper methods and debugging methods
----------------------------------------------------------------------------
*/
template< typename TInputImage >
void Segmenter< TInputImage >
::SetInputImageValues(InputImageTypePointer img,
ImageRegionType region,
InputPixelType value)
{
ImageRegionIterator< InputImageType > it(img, region);
it.GoToBegin();
while ( !it.IsAtEnd() )
{
it.Set(value);
++it;
}
}
template< typename TInputImage >
void Segmenter< TInputImage >
::SetOutputImageValues(OutputImageTypePointer img,
ImageRegionType region,
IdentifierType value)
{
ImageRegionIterator< OutputImageType > it(img, region);
it.GoToBegin();
while ( !it.IsAtEnd() )
{
it.Set(value);
++it;
}
}
template< typename TInputImage >
void Segmenter< TInputImage >
::MinMax(InputImageTypePointer img, ImageRegionType region,
InputPixelType & min, InputPixelType & max)
{
ImageRegionIterator< InputImageType > it(img, region);
it.GoToBegin();
min = it.Value();
max = it.Value();
while ( !it.IsAtEnd() )
{
if ( it.Get() > max ) { max = it.Get(); }
if ( it.Get() < min ) { min = it.Get(); }
++it;
}
}
template< typename TInputImage >
void Segmenter< TInputImage >
::MergeFlatRegions(flat_region_table_t & regions,
EquivalencyTable::Pointer eqTable)
{
// Note that the labels must have no interdependencies. That is,
// every key must map to a value that is not itself a key in the
// table. This means that you must always merge label->first with
// label->second (a to b). EquivalencyTable can be converted to this
// format with its Flatten() method.
eqTable->Flatten();
typename flat_region_table_t::iterator a, b;
for ( EquivalencyTable::ConstIterator it = eqTable->Begin();
it != eqTable->End(); ++it )
{
if ( ( ( a = regions.find( ( *it ).first ) ) == regions.end() )
|| ( ( b = regions.find( ( *it ).second ) ) == regions.end() ) )
{
itkGenericExceptionMacro (<< "MergeFlatRegions:: An unexpected and fatal error has occurred.");
}
if ( ( *a ).second.bounds_min < ( *b ).second.bounds_min )
{
( *b ).second.bounds_min = ( *a ).second.bounds_min;
( *b ).second.min_label_ptr = ( *a ).second.min_label_ptr;
}
regions.erase(a);
}
}
template< typename TInputImage >
void Segmenter< TInputImage >
::RelabelImage(OutputImageTypePointer img,
ImageRegionType region,
EquivalencyTable::Pointer eqTable)
{
eqTable->Flatten();
IdentifierType temp;
ImageRegionIterator< OutputImageType > it(img, region);
it.GoToBegin();
while ( !it.IsAtEnd() )
{
temp = eqTable->Lookup( it.Get() );
if ( temp != it.Get() ) { it.Set(temp); }
++it;
}
}
template< typename TInputImage >
void Segmenter< TInputImage >::Threshold(InputImageTypePointer destination,
InputImageTypePointer source,
const ImageRegionType source_region,
const ImageRegionType destination_region,
InputPixelType threshold)
{
ImageRegionIterator< InputImageType > dIt(destination, destination_region);
ImageRegionIterator< InputImageType > sIt(source, source_region);
dIt.GoToBegin();
sIt.GoToBegin();
// Assumes that source_region and destination region are the same size. Does
// no checking!!
if ( NumericTraits< InputPixelType >::is_integer )
{
// integral data type, if any pixel is at the maximum possible
// value for the data type, then drop the value by one intensity
// value. This the watershed algorithm to construct a "barrier" or
// "wall" around the image that will stop the watershed without
// requiring a expensive boundary condition checks.
while ( !dIt.IsAtEnd() )
{
InputPixelType tmp = sIt.Get();
if ( tmp < threshold )
{
dIt.Set(threshold);
}
else if ( tmp == NumericTraits< InputPixelType >::max() )
{
dIt.Set(tmp - NumericTraits< InputPixelType >::One);
}
else
{
dIt.Set(tmp);
}
++dIt;
++sIt;
}
}
else
{
// floating point data, no need to worry about overflow
while ( !dIt.IsAtEnd() )
{
if ( sIt.Get() < threshold )
{
dIt.Set(threshold);
}
else
{
dIt.Set( sIt.Get() );
}
++dIt;
++sIt;
}
}
}
/*
----------------------------------------------------------------------------
Pipeline methods
----------------------------------------------------------------------------
*/
template< typename TInputImage >
typename Segmenter< TInputImage >::DataObjectPointer
Segmenter< TInputImage >
::MakeOutput(DataObjectPointerArraySizeType idx)
{
if ( idx == 0 )
{
return OutputImageType::New().GetPointer();
}
else if ( idx == 1 )
{
return SegmentTableType::New().GetPointer();
}
else if ( idx == 2 )
{
return BoundaryType::New().GetPointer();
}
else { return 0; }
}
template< typename TInputImage >
void
Segmenter< TInputImage >::UpdateOutputInformation()
{
unsigned int i;
// call the superclass' implementation of this method
Superclass::UpdateOutputInformation();
// get pointers to the input and output
typename InputImageType::Pointer inputPtr = this->GetInputImage();
typename OutputImageType::Pointer outputPtr = this->GetOutputImage();
if ( !inputPtr || !outputPtr )
{
return;
}
// we need to compute the output spacing, the output image size, and the
// output image start index
const typename InputImageType::SizeType & inputSize =
inputPtr->GetLargestPossibleRegion().GetSize();
const typename InputImageType::IndexType & inputStartIndex =
inputPtr->GetLargestPossibleRegion().GetIndex();
typename OutputImageType::SizeType outputSize;
typename OutputImageType::IndexType outputStartIndex;
for ( i = 0; i < OutputImageType::ImageDimension; i++ )
{
outputSize[i] = inputSize[i];
outputStartIndex[i] = inputStartIndex[i];
}
typename OutputImageType::RegionType outputLargestPossibleRegion;
outputLargestPossibleRegion.SetSize(outputSize);
outputLargestPossibleRegion.SetIndex(outputStartIndex);
outputPtr->SetLargestPossibleRegion(outputLargestPossibleRegion);
}
template< typename TInputImage >
void Segmenter< TInputImage >::GenerateInputRequestedRegion()
{
// call the superclass' implementation of this method
Superclass::GenerateInputRequestedRegion();
// get pointers to the input and output
typename InputImageType::Pointer inputPtr = this->GetInputImage();
typename OutputImageType::Pointer outputPtr = this->GetOutputImage();
if ( !inputPtr || !outputPtr )
{
return;
}
//
// FOR NOW WE'LL JUST SET THE INPUT REGION TO THE OUTPUT REGION
// AND OVERRIDE THIS LATER
//
inputPtr->SetRequestedRegion( outputPtr->GetRequestedRegion() );
}
template< typename TInputImage >
void
Segmenter< TInputImage >
::GenerateOutputRequestedRegion(DataObject *output)
{
// Only the Image output need to be propagated through.
// No choice but to use RTTI here.
ImageBase< ImageDimension > *imgData;
ImageBase< ImageDimension > *op;
imgData = dynamic_cast< ImageBase< ImageDimension > * >( output );
typename TInputImage::RegionType c_reg;
if ( imgData )
{
std::vector< ProcessObject::DataObjectPointer >::size_type idx;
for ( idx = 0; idx < this->GetNumberOfIndexedOutputs(); ++idx )
{
if ( this->GetOutput(idx) && this->GetOutput(idx) != output )
{
op = dynamic_cast< ImageBase< ImageDimension >
* >( this->GetOutput(idx) );
if ( op ) { this->GetOutput(idx)->SetRequestedRegion(output); }
}
}
}
}
template< typename TInputImage >
Segmenter< TInputImage >
::Segmenter()
{
m_Threshold = 0.0;
m_MaximumFloodLevel = 1.0;
m_CurrentLabel = 1;
m_DoBoundaryAnalysis = false;
m_SortEdgeLists = true;
m_Connectivity.direction = 0;
m_Connectivity.index = 0;
typename OutputImageType::Pointer img =
static_cast< OutputImageType * >( this->MakeOutput(0).GetPointer() );
typename SegmentTableType::Pointer st =
static_cast< SegmentTableType * >( this->MakeOutput(1).GetPointer() );
typename BoundaryType::Pointer bd =
static_cast< BoundaryType * >( this->MakeOutput(2).GetPointer() );
this->SetNumberOfRequiredOutputs(3);
this->ProcessObject::SetNthOutput( 0, img.GetPointer() );
this->ProcessObject::SetNthOutput( 1, st.GetPointer() );
this->ProcessObject::SetNthOutput( 2, bd.GetPointer() );
// Allocate memory for connectivity
m_Connectivity.size = 2 * ImageDimension;
m_Connectivity.index = new unsigned int[m_Connectivity.size];
m_Connectivity.direction =
new typename InputImageType::OffsetType[m_Connectivity.size];
}
template< typename TInputImage >
void
Segmenter< TInputImage >
::PrintSelf(std::ostream & os, Indent indent) const
{
Superclass::PrintSelf(os, indent);
os << indent << "SortEdgeLists: " << m_SortEdgeLists << std::endl;
os << indent << "DoBoundaryAnalysis: " << m_DoBoundaryAnalysis << std::endl;
os << indent << "Threshold: " << m_Threshold << std::endl;
os << indent << "MaximumFloodLevel: " << m_MaximumFloodLevel << std::endl;
os << indent << "CurrentLabel: " << m_CurrentLabel << std::endl;
}
} // end namespace watershed
} // end namespace itk
#endif
|