This file is indexed.

/usr/include/ITK-4.5/itkWeightSetBase.h is in libinsighttoolkit4-dev 4.5.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef __itkWeightSetBase_h
#define __itkWeightSetBase_h

#include "itkLightProcessObject.h"
#include "vnl/vnl_matrix.h"
#include "vnl/vnl_diag_matrix.h"
#include "itkVector.h"
#include "itkMersenneTwisterRandomVariateGenerator.h"
#include <cmath>
#include <cstdlib>

namespace itk
{
namespace Statistics
{
/** \class WeightSetBase
 * \brief This is the itkWeightSetBase class.
 *
 * \ingroup ITKNeuralNetworks
 */

template<typename TMeasurementVector, typename TTargetVector>
class WeightSetBase : public LightProcessObject
{
public:

  typedef WeightSetBase            Self;
  typedef LightProcessObject       Superclass;
  typedef SmartPointer<Self>       Pointer;
  typedef SmartPointer<const Self> ConstPointer;
  itkTypeMacro(WeightSetBase, LightProcessObject);

  typedef MersenneTwisterRandomVariateGenerator  RandomVariateGeneratorType;

  typedef typename TMeasurementVector::ValueType ValueType;
  typedef ValueType*                             ValuePointer;
  typedef const ValueType*                       ValueConstPointer;

  void Initialize();

  ValueType RandomWeightValue(ValueType low, ValueType high);

  virtual void ForwardPropagate(ValuePointer inputlayeroutputvalues);
  virtual void BackwardPropagate(ValuePointer inputerror);

  void SetConnectivityMatrix(vnl_matrix < int>);

  void SetNumberOfInputNodes(unsigned int n);
  unsigned int GetNumberOfInputNodes() const;

  void SetNumberOfOutputNodes(unsigned int n);
  unsigned int GetNumberOfOutputNodes() const;

  void SetRange(ValueType Range);

  virtual ValuePointer GetOutputValues();
  virtual ValuePointer GetInputValues();

  ValuePointer GetTotalDeltaValues();
  ValuePointer GetTotalDeltaBValues();

  ValuePointer GetDeltaValues();

  void SetDeltaValues(ValuePointer);
  void SetDWValues(ValuePointer);
  void SetDBValues(ValuePointer);
  ValuePointer GetDeltaBValues();
  void SetDeltaBValues(ValuePointer);
  ValuePointer GetDWValues();
  ValuePointer GetPrevDWValues();
  ValuePointer GetPrevDBValues();
  ValuePointer GetPrev_m_2DWValues();
  ValuePointer GetPrevDeltaValues();
  ValuePointer GetPrev_m_2DeltaValues();
  ValuePointer GetPrevDeltaBValues();
  ValuePointer GetWeightValues();
  ValueConstPointer GetWeightValues() const;

  void SetWeightValues(ValuePointer weights);
  virtual void UpdateWeights(ValueType LearningRate);

  itkSetMacro( Momentum, ValueType );
  itkGetConstReferenceMacro( Momentum, ValueType );

  itkSetMacro( Bias, ValueType );
  itkGetConstReferenceMacro( Bias, ValueType );

  itkSetMacro( FirstPass, bool );
  itkGetConstMacro( FirstPass, bool );

  itkSetMacro( SecondPass, bool );
  itkGetConstMacro( SecondPass, bool );

  void InitializeWeights();

  itkSetMacro(WeightSetId,unsigned int);
  itkGetConstMacro(WeightSetId,unsigned int);

  itkSetMacro(InputLayerId,unsigned int);
  itkGetConstMacro(InputLayerId,unsigned int);

  itkSetMacro(OutputLayerId,unsigned int);
  itkGetConstMacro(OutputLayerId,unsigned int);

protected:

  WeightSetBase();
  ~WeightSetBase();

  /** Method to print the object. */
  virtual void PrintSelf( std::ostream& os, Indent indent ) const;

  typename RandomVariateGeneratorType::Pointer m_RandomGenerator;

  unsigned int              m_NumberOfInputNodes;
  unsigned int              m_NumberOfOutputNodes;
  vnl_matrix<ValueType>     m_OutputValues;
  vnl_matrix<ValueType>     m_InputErrorValues;

  // weight updates dw=lr * del *y
  // DW= current
  // DW_m_1 = previous
  // DW_m_2= second to last
  // same applies for delta and bias values

  vnl_matrix<ValueType> m_DW;            // delta valies for weight update
  vnl_matrix<ValueType> m_DW_new;        // delta valies for weight update
  vnl_matrix<ValueType> m_DW_m_1;        // delta valies for weight update
  vnl_matrix<ValueType> m_DW_m_2;        // delta valies for weight update
  vnl_matrix<ValueType> m_DW_m;          // delta valies for weight update

  vnl_vector<ValueType> m_DB;            // delta values for bias update
  vnl_vector<ValueType> m_DB_new;        // delta values for bias update
  vnl_vector<ValueType> m_DB_m_1;        // delta values for bias update
  vnl_vector<ValueType> m_DB_m_2;        // delta values for bias update

  vnl_matrix<ValueType> m_Del;           // dw=lr * del * y
  vnl_matrix<ValueType> m_Del_new;       // dw=lr * del * y
  vnl_matrix<ValueType> m_Del_m_1;       // dw=lr * del * y
  vnl_matrix<ValueType> m_Del_m_2;       // dw=lr * del * y

  vnl_vector<ValueType> m_Delb;          // delta values for bias update
  vnl_vector<ValueType> m_Delb_new;      // delta values for bias update
  vnl_vector<ValueType> m_Delb_m_1;      // delta values for bias update
  vnl_vector<ValueType> m_Delb_m_2;      // delta values for bias update

  vnl_matrix<ValueType> m_InputLayerOutput;
  vnl_matrix<ValueType> m_WeightMatrix;  // composed of weights and a column
  // of biases
  vnl_matrix<int>       m_ConnectivityMatrix;

  ValueType m_Momentum;
  ValueType m_Bias;
  bool      m_FirstPass;
  bool      m_SecondPass;
  ValueType m_Range;

  unsigned int m_InputLayerId;
  unsigned int m_OutputLayerId;
  unsigned int m_WeightSetId;

};  //class

} // end namespace Statistics
} // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#include "itkWeightSetBase.hxx"
#endif


#endif