/usr/include/ITK-4.5/itkZeroFluxNeumannBoundaryCondition.hxx is in libinsighttoolkit4-dev 4.5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 | /*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef __itkZeroFluxNeumannBoundaryCondition_hxx
#define __itkZeroFluxNeumannBoundaryCondition_hxx
#include "itkZeroFluxNeumannBoundaryCondition.h"
namespace itk
{
template< typename TInputImage, typename TOutputImage >
typename ZeroFluxNeumannBoundaryCondition< TInputImage, TOutputImage >::OutputPixelType
ZeroFluxNeumannBoundaryCondition< TInputImage, TOutputImage >
::operator()(const OffsetType & point_index, const OffsetType & boundary_offset,
const NeighborhoodType *data) const
{
int linear_index = 0;
// Return the value of the pixel at the closest boundary point.
for ( unsigned int i = 0; i < ImageDimension; ++i )
{
linear_index += ( point_index[i] + boundary_offset[i] ) * data->GetStride(i);
}
// The reinterpret_cast is necessary, cause we will have a warning if we
// do not do this. (In fact this function exists for legacy
// reasons. The overloaded function below should be (and is) used instead).
// See any of the neighborhood iterators.
//
// (data->operator[](linear_index)) is guaranteed to be a pointer to
// TImage::PixelType except for VectorImage, in which case, it will be a
// pointer to TImage::InternalPixelType.
//
// A typical neighborhood iterator working on an image will use the boundary
// condition in the following manner:
//
// \code
// // Initialize the functor typically in the constructor.
// m_NeighborhoodAccessorFunctor = image->GetNeighborhoodAccessor();
// m_NeighborhoodAccessorFunctor->SetBegin( image->GetBufferPointer() );
//
// m_NeighborhoodAccessorFunctor.BoundaryCondition(
// point_index, boundary_offset, data, m_ChosenBoundaryCondition );
// \endcode
//
return static_cast< OutputPixelType >
(*( reinterpret_cast< PixelType * >( ( data->operator[](linear_index) ) ) ) );
}
template< typename TInputImage, typename TOutputImage >
typename ZeroFluxNeumannBoundaryCondition< TInputImage, TOutputImage >::OutputPixelType
ZeroFluxNeumannBoundaryCondition< TInputImage, TOutputImage >
::operator()(const OffsetType & point_index, const OffsetType & boundary_offset,
const NeighborhoodType *data,
const NeighborhoodAccessorFunctorType & neighborhoodAccessorFunctor) const
{
int linear_index = 0;
// Return the value of the pixel at the closest boundary point.
for ( unsigned int i = 0; i < ImageDimension; ++i )
{
linear_index += ( point_index[i] + boundary_offset[i] ) * data->GetStride(i);
}
return static_cast< OutputPixelType >
( neighborhoodAccessorFunctor.Get( data->operator[](linear_index) ) );
}
template< typename TInputImage, typename TOutputImage >
typename ZeroFluxNeumannBoundaryCondition< TInputImage, TOutputImage >::RegionType
ZeroFluxNeumannBoundaryCondition< TInputImage, TOutputImage >
::GetInputRequestedRegion( const RegionType & inputLargestPossibleRegion,
const RegionType & outputRequestedRegion ) const
{
IndexType inputIndex = inputLargestPossibleRegion.GetIndex();
SizeType inputSize = inputLargestPossibleRegion.GetSize();
IndexType outputIndex = outputRequestedRegion.GetIndex();
SizeType outputSize = outputRequestedRegion.GetSize();
IndexType requestIndex;
SizeType requestSize;
RegionType requestRegion;
for ( unsigned int i = 0; i < ImageDimension; i++)
{
// Check if the output region is entirely below the low index of
// the image region.
if ( outputIndex[i] + static_cast< OffsetValueType >( outputSize[i] ) <= inputIndex[i] )
{
// Include an image layer one pixel thick closest to the outputRequestedRegion
requestIndex[i] = inputIndex[i];
requestSize[i] = 1;
}
// Check if the output is entirely above the high index of the
// image region.
else if ( outputIndex[i] >= inputIndex[i] + static_cast< OffsetValueType >( inputSize[i] ) )
{
// Include an image layer one pixel thick closest to the outputRequestedRegion
requestIndex[i] = inputIndex[i] + static_cast< OffsetValueType >( inputSize[i] ) - 1;
requestSize[i] = 1;
}
// The output region intersects the image region.
else
{
requestIndex[i] = inputIndex[i];
requestSize[i] = inputSize[i];
// First check the start index
if ( requestIndex[i] < outputIndex[i] )
{
// How much do we need to adjust
OffsetValueType crop = outputIndex[i] - requestIndex[i];
// Adjust the start index and the size of the current region
requestIndex[i] += crop;
requestSize[i] -= static_cast< SizeValueType >( crop );
}
// Now check the final size
if ( requestIndex[i] + static_cast< OffsetValueType >( requestSize[i] ) >
outputIndex[i] + static_cast< OffsetValueType >( outputSize[i] ) )
{
// How much do we need to adjust
OffsetValueType crop = requestIndex[i] + static_cast< OffsetValueType >( requestSize[i] )
- outputIndex[i] - static_cast< OffsetValueType >( outputSize[i] );
// Adjust the size
requestSize[i] -= static_cast< SizeValueType >( crop );
}
}
}
RegionType inputRequestedRegion( requestIndex, requestSize );
return inputRequestedRegion;
}
template< typename TInputImage, typename TOutputImage >
typename ZeroFluxNeumannBoundaryCondition< TInputImage, TOutputImage >::OutputPixelType
ZeroFluxNeumannBoundaryCondition< TInputImage, TOutputImage >
::GetPixel( const IndexType & index, const TInputImage * image ) const
{
RegionType imageRegion = image->GetLargestPossibleRegion();
IndexType imageIndex = imageRegion.GetIndex();
SizeType imageSize = imageRegion.GetSize();
IndexType lookupIndex;
for ( unsigned int i = 0; i < ImageDimension; ++i )
{
IndexValueType lowerIndex = imageIndex[i];
IndexValueType upperIndex = imageIndex[i] + static_cast< IndexValueType >( imageSize[i] ) - 1;
if ( index[i] < lowerIndex )
{
lookupIndex[i] = lowerIndex;
}
else if ( index[i] > upperIndex )
{
lookupIndex[i] = upperIndex;
}
else // in bounds
{
lookupIndex[i] = index[i];
}
}
return static_cast< OutputPixelType >( image->GetPixel( lookupIndex ) );
}
} // end namespace itk
#endif
|