This file is indexed.

/usr/include/ITK-4.5/itkhdf5/H5Cprivate.h is in libinsighttoolkit4-dev 4.5.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
 * Copyright by The HDF Group.                                               *
 * Copyright by the Board of Trustees of the University of Illinois.         *
 * All rights reserved.                                                      *
 *                                                                           *
 * This file is part of HDF5.  The full HDF5 copyright notice, including     *
 * terms governing use, modification, and redistribution, is contained in    *
 * the files COPYING and Copyright.html.  COPYING can be found at the root   *
 * of the source code distribution tree; Copyright.html can be found at the  *
 * root level of an installed copy of the electronic HDF5 document set and   *
 * is linked from the top-level documents page.  It can also be found at     *
 * http://hdfgroup.org/HDF5/doc/Copyright.html.  If you do not have          *
 * access to either file, you may request a copy from help@hdfgroup.org.     *
 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

/*-------------------------------------------------------------------------
 *
 * Created:		H5Cprivate.h
 *			6/3/04
 *			John Mainzer
 *
 * Purpose:		Constants and typedefs available to the rest of the
 *			library.
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */

#ifndef _H5Cprivate_H
#define _H5Cprivate_H

#include "H5Cpublic.h"		/* public prototypes		        */

/* Pivate headers needed by this header */
#include "H5private.h"		/* Generic Functions			*/
#include "H5Fprivate.h"		/* File access				*/


#define H5C_DO_SANITY_CHECKS		0
#define H5C_DO_EXTREME_SANITY_CHECKS	0

/* This sanity checking constant was picked out of the air.  Increase
 * or decrease it if appropriate.  Its purposes is to detect corrupt
 * object sizes, so it probably doesn't matter if it is a bit big.
 *
 *					JRM - 5/17/04
 */
#define H5C_MAX_ENTRY_SIZE		((size_t)(32 * 1024 * 1024))

/* H5C_COLLECT_CACHE_STATS controls overall collection of statistics
 * on cache activity.  In general, this #define should be set to 0.
 */
#define H5C_COLLECT_CACHE_STATS	0

/* H5C_COLLECT_CACHE_ENTRY_STATS controls collection of statistics
 * in individual cache entries.
 *
 * H5C_COLLECT_CACHE_ENTRY_STATS should only be defined to true if
 * H5C_COLLECT_CACHE_STATS is also defined to true.
 */
#if H5C_COLLECT_CACHE_STATS

#define H5C_COLLECT_CACHE_ENTRY_STATS	1

#else

#define H5C_COLLECT_CACHE_ENTRY_STATS	0

#endif /* H5C_COLLECT_CACHE_STATS */


#ifdef H5_HAVE_PARALLEL

/* we must maintain the clean and dirty LRU lists when we are compiled
 * with parallel support.
 */
#define H5C_MAINTAIN_CLEAN_AND_DIRTY_LRU_LISTS  1

#else /* H5_HAVE_PARALLEL */

/* The clean and dirty LRU lists don't buy us anything here -- we may
 * want them on for testing on occasion, but in general they should be
 * off.
 */
#define H5C_MAINTAIN_CLEAN_AND_DIRTY_LRU_LISTS  0

#endif /* H5_HAVE_PARALLEL */


/* Typedef for the main structure for the cache (defined in H5Cpkg.h) */

typedef struct H5C_t H5C_t;


/*
 * Class methods pertaining to caching.	 Each type of cached object will
 * have a constant variable with permanent life-span that describes how
 * to cache the object.	 That variable will be of type H5C_class_t and
 * have the following required fields...
 *
 * LOAD:	Loads an object from disk to memory.  The function
 *		should allocate some data structure and return it.
 *
 * FLUSH:	Writes some data structure back to disk.  It would be
 *		wise for the data structure to include dirty flags to
 *		indicate whether it really needs to be written.	 This
 *		function is also responsible for freeing memory allocated
 *		by the LOAD method if the DEST argument is non-zero (by
 *              calling the DEST method).
 *
 * DEST:	Just frees memory allocated by the LOAD method.
 *
 * CLEAR:	Just marks object as non-dirty.
 *
 * SIZE:	Report the size (on disk) of the specified cache object.
 *		Note that the space allocated on disk may not be contiguous.
 */

#define H5C_CALLBACK__NO_FLAGS_SET		0x0
#define H5C_CALLBACK__SIZE_CHANGED_FLAG		0x1
#define H5C_CALLBACK__MOVED_FLAG		0x2

/* Actions that can be reported to 'notify' client callback */
typedef enum H5C_notify_action_t {
    H5C_NOTIFY_ACTION_AFTER_INSERT,     /* Entry has been added to the cache */
                                        /* (could be loaded from file with
                                         *      'protect' call, or inserted
                                         *      with 'set' call)
                                         */
    H5C_NOTIFY_ACTION_BEFORE_EVICT      /* Entry is about to be evicted from cache */
} H5C_notify_action_t;

typedef void *(*H5C_load_func_t)(H5F_t *f,
                                 hid_t dxpl_id,
                                 haddr_t addr,
                                 void *udata);
typedef herr_t (*H5C_flush_func_t)(H5F_t *f,
                                   hid_t dxpl_id,
                                   hbool_t dest,
                                   haddr_t addr,
                                   void *thing,
				   unsigned * flags_ptr);
typedef herr_t (*H5C_dest_func_t)(H5F_t *f,
                                  void *thing);
typedef herr_t (*H5C_clear_func_t)(H5F_t *f,
                                   void *thing,
                                   hbool_t dest);
typedef herr_t (*H5C_notify_func_t)(H5C_notify_action_t action,
                                 void *thing);
typedef herr_t (*H5C_size_func_t)(const H5F_t *f,
                                  const void *thing,
                                  size_t *size_ptr);

typedef struct H5C_class_t {
    int			id;
    H5C_load_func_t	load;
    H5C_flush_func_t	flush;
    H5C_dest_func_t	dest;
    H5C_clear_func_t	clear;
    H5C_size_func_t	size;
} H5C_class_t;


/* Type defintions of call back functions used by the cache as a whole */

typedef herr_t (*H5C_write_permitted_func_t)(const H5F_t *f,
                                             hid_t dxpl_id,
                                             hbool_t * write_permitted_ptr);

typedef herr_t (*H5C_log_flush_func_t)(H5C_t * cache_ptr,
                                       haddr_t addr,
                                       hbool_t was_dirty,
                                       unsigned flags,
                                       int type_id);

/* Upper and lower limits on cache size.  These limits are picked
 * out of a hat -- you should be able to change them as necessary.
 *
 * However, if you need a very big cache, you should also increase the
 * size of the hash table (H5C__HASH_TABLE_LEN in H5Cpkg.h).  The current
 * upper bound on cache size is rather large for the current hash table
 * size.
 */

#define H5C__MAX_MAX_CACHE_SIZE		((size_t)(128 * 1024 * 1024))
#define H5C__MIN_MAX_CACHE_SIZE		((size_t)(1024))


/* Default max cache size and min clean size are give here to make
 * them generally accessable.
 */

#define H5C__DEFAULT_MAX_CACHE_SIZE     ((size_t)(4 * 1024 * 1024))
#define H5C__DEFAULT_MIN_CLEAN_SIZE     ((size_t)(2 * 1024 * 1024))


/****************************************************************************
 *
 * structure H5C_cache_entry_t
 *
 * Instances of the H5C_cache_entry_t structure are used to store cache
 * entries in a hash table and sometimes in a skip list.
 * See H5SL.c for the particulars of the skip list.
 *
 * In typical application, this structure is the first field in a
 * structure to be cached.  For historical reasons, the external module
 * is responsible for managing the is_dirty field (this is no longer
 * completely true.  See the comment on the is_dirty field for details).
 * All other fields are managed by the cache.
 *
 * The fields of this structure are discussed individually below:
 *
 *						JRM - 4/26/04
 *
 * magic:	Unsigned 32 bit integer that must always be set to
 *              H5C__H5C_CACHE_ENTRY_T_MAGIC when the entry is valid.
 *              The field must be set to H5C__H5C_CACHE_ENTRY_T_BAD_MAGIC
 *              just before the entry is freed.
 *
 *              This is necessary, as the LRU list can be changed out
 *              from under H5C_make_space_in_cache() by the flush
 *              callback which may change the size of an existing entry,
 *              and/or load a new entry while serializing the target entry.
 *
 *              This in turn can cause a recursive call to
 *              H5C_make_space_in_cache() which may either flush or evict
 *              the next entry that the first invocation of that function
 *              was about to examine.
 *
 *              The magic field allows H5C_make_space_in_cache() to
 *              detect this case, and re-start its scan from the bottom
 *              of the LRU when this situation occurs.
 *
 *              This field is only compiled in debug mode.
 *
 * addr:	Base address of the cache entry on disk.
 *
 * size:	Length of the cache entry on disk.  Note that unlike normal
 *		caches, the entries in this cache are of variable length.
 *		The entries should never overlap, and when we do writebacks,
 *		we will want to writeback adjacent entries where possible.
 *
 *		NB: At present, entries need not be contiguous on disk.  Until
 *		    we fix this, we can't do much with writing back adjacent
 *		    entries.
 *
 * type:	Pointer to the instance of H5C_class_t containing pointers
 *		to the methods for cache entries of the current type.  This
 *		field should be NULL when the instance of H5C_cache_entry_t
 *		is not in use.
 *
 *		The name is not particularly descriptive, but is retained
 *		to avoid changes in existing code.
 *
 * is_dirty:	Boolean flag indicating whether the contents of the cache
 *		entry has been modified since the last time it was written
 *		to disk.
 *
 *		NOTE: For historical reasons, this field is not maintained
 *		      by the cache.  Instead, the module using the cache
 *		      sets this flag when it modifies the entry, and the
 *		      flush and clear functions supplied by that module
 *		      reset the dirty when appropriate.
 *
 *		      This is a bit quirky, so we may want to change this
 *		      someday.  However it will require a change in the
 *		      cache interface.
 *
 *		Update: Management of the is_dirty field has been largely
 *		      moved into the cache.  The only remaining exceptions
 *		      are the flush and clear functions supplied by the
 *		      modules using the cache.  These still clear the
 *		      is_dirty field as before.  -- JRM 7/5/05
 *
 * dirtied:	Boolean flag used to indicate that the entry has been
 * 		dirtied while protected.
 *
 * 		This field is set to FALSE in the protect call, and may
 * 		be set to TRUE by the
 * 		H5C_mark_entry_dirty()
 * 		call at an time prior to the unprotect call.
 *
 * 		The H5C_mark_entry_dirty() call exists
 * 		as a convenience function for the fractal heap code which
 * 		may not know if an entry is protected or pinned, but knows
 * 		that is either protected or pinned.  The dirtied field was
 * 		added as in the parallel case, it is necessary to know
 * 		whether a protected entry was dirty prior to the protect call.
 *
 * is_protected: Boolean flag indicating whether this entry is protected
 *		(or locked, to use more conventional terms).  When it is
 *		protected, the entry cannot be flushed or accessed until
 *		it is unprotected (or unlocked -- again to use more
 *		conventional terms).
 *
 *		Note that protected entries are removed from the LRU lists
 *		and inserted on the protected list.
 *
 * is_read_only: Boolean flag that is only meaningful if is_protected is
 * 		TRUE.  In this circumstance, it indicates whether the
 * 		entry has been protected read only, or read/write.
 *
 * 		If the entry has been protected read only (i.e. is_protected
 * 		and is_read_only are both TRUE), we allow the entry to be
 * 		protected more than once.
 *
 *		In this case, the number of readers is maintained in the
 *		ro_ref_count field (see below), and unprotect calls simply
 *		decrement that field until it drops to zero, at which point
 *		the entry is actually unprotected.
 *
 * ro_ref_count: Integer field used to maintain a count of the number of
 * 		outstanding read only protects on this entry.  This field
 * 		must be zero whenever either is_protected or is_read_only
 * 		are TRUE.
 *
 * is_pinned:	Boolean flag indicating whether the entry has been pinned
 * 		in the cache.
 *
 * 		For very hot entries, the protect / unprotect overhead
 * 		can become excessive.  Thus the cache has been extended
 * 		to allow an entry to be "pinned" in the cache.
 *
 * 		Pinning an entry in the cache has several implications:
 *
 * 		1) A pinned entry cannot be evicted.  Thus unprotected
 * 		   pinned entries must be stored in the pinned entry
 * 		   list, instead of being managed by the replacement
 * 		   policy code (LRU at present).
 *
 * 		2) A pinned entry can be accessed or modified at any time.
 * 		   Therefore, the cache must check with the entry owner
 * 		   before flushing it.  If permission is denied, the
 * 		   cache does not flush the entry.
 *
 * 		3) A pinned entry can be marked as dirty (and possibly
 *		   change size) while it is unprotected.
 *
 *		4) The flush-destroy code must allow pinned entries to
 *		   be unpinned (and possibly unprotected) during the
 *		   flush.
 *
 *		   					JRM -- 3/16/06
 *
 * in_slist:	Boolean flag indicating whether the entry is in the skip list
 *		As a general rule, entries are placed in the list when they
 *              are marked dirty.  However they may remain in the list after
 *              being flushed.
 *
 *              Update: Dirty entries are now removed from the skip list
 *			when they are flushed.
 *
 * flush_marker:  Boolean flag indicating that the entry is to be flushed
 *		the next time H5C_flush_cache() is called with the
 *		H5C__FLUSH_MARKED_ENTRIES_FLAG.  The flag is reset when
 *		the entry is flushed for whatever reason.
 *
 * clear_on_unprotect:  Boolean flag used only in PHDF5.  When H5C is used
 *		to implement the metadata cache In the parallel case, only
 *		the cache with mpi rank 0 is allowed to actually write to
 *		file -- all other caches must retain dirty entries until they
 *		are advised that the entry is clean.
 *
 *		This flag is used in the case that such an advisory is
 *		received when the entry is protected.  If it is set when an
 *		entry is unprotected, and the dirtied flag is not set in
 *		the unprotect, the entry's is_dirty flag is reset by flushing
 *		it with the H5C__FLUSH_CLEAR_ONLY_FLAG.
 *
 * flush_immediately:  Boolean flag used only in Phdf5 -- and then only 
 *		for H5AC_METADATA_WRITE_STRATEGY__DISTRIBUTED.
 *
 *		When a destributed metadata write is triggered at a 
 *		sync point, this field is used to mark entries that 
 *		must be flushed before leaving the sync point.  At all
 *		other times, this field should be set to FALSE.
 *
 * flush_in_progress:  Boolean flag that is set to true iff the entry
 * 		is in the process of being flushed.  This allows the cache
 * 		to detect when a call is the result of a flush callback.
 *
 * destroy_in_progress:  Boolean flag that is set to true iff the entry
 * 		is in the process of being flushed and destroyed.
 *
 * free_file_space_on_destroy:  Boolean flag that is set to true iff the entry
 * 		is in the process of being flushed and destroyed and the file
 *              space used by the object should be freed by the cache client's
 *              'dest' callback routine.
 *
 *
 * Fields supporting the hash table:
 *
 * Fields in the cache are indexed by a more or less conventional hash table.
 * If there are multiple entries in any hash bin, they are stored in a doubly
 * linked list.
 *
 * ht_next:	Next pointer used by the hash table to store multiple
 *		entries in a single hash bin.  This field points to the
 *		next entry in the doubly linked list of entries in the
 *		hash bin, or NULL if there is no next entry.
 *
 * ht_prev:     Prev pointer used by the hash table to store multiple
 *              entries in a single hash bin.  This field points to the
 *              previous entry in the doubly linked list of entries in
 *		the hash bin, or NULL if there is no previuos entry.
 *
 *
 * Fields supporting replacement policies:
 *
 * The cache must have a replacement policy, and it will usually be
 * necessary for this structure to contain fields supporting that policy.
 *
 * While there has been interest in several replacement policies for
 * this cache, the initial development schedule is tight.  Thus I have
 * elected to support only a modified LRU policy for the first cut.
 *
 * When additional replacement policies are added, the fields in this
 * section will be used in different ways or not at all.  Thus the
 * documentation of these fields is repeated for each replacement policy.
 *
 * Modified LRU:
 *
 * When operating in parallel mode, we must ensure that a read does not
 * cause a write.  If it does, the process will hang, as the write will
 * be collective and the other processes will not know to participate.
 *
 * To deal with this issue, I have modified the usual LRU policy by adding
 * clean and dirty LRU lists to the usual LRU list.  When reading in
 * parallel mode, we evict from the clean LRU list only.  This implies
 * that we must try to ensure that the clean LRU list is reasonably well
 * stocked.  See the comments on H5C_t in H5Cpkg.h for more details.
 *
 * Note that even if we start with a completely clean cache, a sequence
 * of protects without unprotects can empty the clean LRU list.  In this
 * case, the cache must grow temporarily.  At the next write, we will
 * attempt to evict enough entries to get the cache down to its nominal
 * maximum size.
 *
 * The use of the replacement policy fields under the Modified LRU policy
 * is discussed below:
 *
 * next:	Next pointer in either the LRU or the protected list,
 *		depending on the current value of protected.  If there
 *		is no next entry on the list, this field should be set
 *		to NULL.
 *
 * prev:	Prev pointer in either the LRU or the protected list,
 *		depending on the current value of protected.  If there
 *		is no previous entry on the list, this field should be
 *		set to NULL.
 *
 * aux_next:	Next pointer on either the clean or dirty LRU lists.
 *		This entry should be NULL when protected is true.  When
 *		protected is false, and dirty is true, it should point
 *		to the next item on the dirty LRU list.  When protected
 *		is false, and dirty is false, it should point to the
 *		next item on the clean LRU list.  In either case, when
 *		there is no next item, it should be NULL.
 *
 * aux_prev:	Previous pointer on either the clean or dirty LRU lists.
 *		This entry should be NULL when protected is true.  When
 *		protected is false, and dirty is true, it should point
 *		to the previous item on the dirty LRU list.  When protected
 *		is false, and dirty is false, it should point to the
 *		previous item on the clean LRU list.  In either case, when
 *		there is no previous item, it should be NULL.
 *
 *
 * Fields supporting metadata journaling:
 *
 * last_trans:	unit64_t containing the ID of the last transaction in
 * 		which this entry was dirtied.  If journaling is disabled,
 * 		or if the entry has never been dirtied in a transaction,
 * 		this field should be set to zero.  Once we notice that
 * 		the specified transaction has made it to disk, we will
 * 		reset this field to zero as well.
 *
 * 		We must maintain this field, as to avoid messages from
 * 		the future, we must not flush a dirty entry to disk
 * 		until the last transaction in which it was dirtied
 * 		has made it to disk in the journal file.
 *
 * trans_next:  Next pointer in the entries modified in the current
 * 		transaction list.  This field should always be null
 * 		unless journaling is enabled, the entry is dirty,
 * 		and last_trans field contains the current transaction
 * 		number.  Even if all these conditions are fulfilled,
 * 		the field will still be NULL if this is the last
 * 		entry on the list.
 *
 * trans_prev:  Previous pointer in the entries modified in the current
 * 		transaction list.  This field should always be null
 * 		unless journaling is enabled, the entry is dirty,
 * 		and last_trans field contains the current transaction
 * 		number.  Even if all these conditions are fulfilled,
 * 		the field will still be NULL if this is the first
 * 		entry on the list.
 *
 *
 * Cache entry stats collection fields:
 *
 * These fields should only be compiled in when both H5C_COLLECT_CACHE_STATS
 * and H5C_COLLECT_CACHE_ENTRY_STATS are true.  When present, they allow
 * collection of statistics on individual cache entries.
 *
 * accesses:	int32_t containing the number of times this cache entry has
 *		been referenced in its lifetime.
 *
 * clears:	int32_t containing the number of times this cache entry has
 *              been cleared in its life time.
 *
 * flushes:	int32_t containing the number of times this cache entry has
 *              been flushed to file in its life time.
 *
 * pins:	int32_t containing the number of times this cache entry has
 * 		been pinned in cache in its life time.
 *
 ****************************************************************************/

#ifndef NDEBUG
#define H5C__H5C_CACHE_ENTRY_T_MAGIC		0x005CAC0A
#define H5C__H5C_CACHE_ENTRY_T_BAD_MAGIC	0xDeadBeef
#endif /* NDEBUG */

typedef struct H5C_cache_entry_t
{
#ifndef NDEBUG
    uint32_t			magic;
#endif /* NDEBUG */
    H5C_t *                     cache_ptr;
    haddr_t			addr;
    size_t			size;
    const H5C_class_t *		type;
    hbool_t			is_dirty;
    hbool_t			dirtied;
    hbool_t			is_protected;
    hbool_t			is_read_only;
    int				ro_ref_count;
    hbool_t			is_pinned;
    hbool_t			in_slist;
    hbool_t			flush_marker;
#ifdef H5_HAVE_PARALLEL
    hbool_t			clear_on_unprotect;
    hbool_t		flush_immediately;
#endif /* H5_HAVE_PARALLEL */
    hbool_t			flush_in_progress;
    hbool_t			destroy_in_progress;
    hbool_t		free_file_space_on_destroy;

    /* fields supporting the hash table: */

    struct H5C_cache_entry_t *	ht_next;
    struct H5C_cache_entry_t *	ht_prev;

    /* fields supporting replacement policies: */

    struct H5C_cache_entry_t *	next;
    struct H5C_cache_entry_t *	prev;
    struct H5C_cache_entry_t *	aux_next;
    struct H5C_cache_entry_t *	aux_prev;

#if H5C_COLLECT_CACHE_ENTRY_STATS

    /* cache entry stats fields */

    int32_t			accesses;
    int32_t			clears;
    int32_t			flushes;
    int32_t			pins;

#endif /* H5C_COLLECT_CACHE_ENTRY_STATS */

} H5C_cache_entry_t;


/****************************************************************************
 *
 * structure H5C_auto_size_ctl_t
 *
 * Instances of H5C_auto_size_ctl_t are used to get and set the control
 * fields for automatic cache re-sizing.
 *
 * The fields of the structure are discussed individually below:
 *
 * version: Integer field containing the version number of this version
 *	of the H5C_auto_size_ctl_t structure.  Any instance of
 *	H5C_auto_size_ctl_t passed to the cache must have a known
 *	version number, or an error will be flagged.
 *
 * report_fcn:  Pointer to the function that is to be called to report
 *      activities each time the auto cache resize code is executed.  If the
 *	field is NULL, no call is made.
 *
 *	If the field is not NULL, it must contain the address of a function
 *	of type H5C_auto_resize_report_fcn.
 *
 * set_initial_size: Boolean flag indicating whether the size of the
 *	initial size of the cache is to be set to the value given in
 *	the initial_size field.  If set_initial_size is FALSE, the
 *	initial_size field is ignored.
 *
 * initial_size: If enabled, this field contain the size the cache is
 *	to be set to upon receipt of this structure.  Needless to say,
 *	initial_size must lie in the closed interval [min_size, max_size].
 *
 * min_clean_fraction: double in the range 0 to 1 indicating the fraction
 *	of the cache that is to be kept clean.  This field is only used
 *	in parallel mode.  Typical values are 0.1 to 0.5.
 *
 * max_size: Maximum size to which the cache can be adjusted.  The
 *	supplied value must fall in the closed interval
 *	[MIN_MAX_CACHE_SIZE, MAX_MAX_CACHE_SIZE].  Also, max_size must
 *	be greater than or equal to min_size.
 *
 * min_size: Minimum size to which the cache can be adjusted.  The
 *      supplied value must fall in the closed interval
 *      [MIN_MAX_CACHE_SIZE, MAX_MAX_CACHE_SIZE].  Also, min_size must
 *	be less than or equal to max_size.
 *
 * epoch_length: Number of accesses on the cache over which to collect
 *	hit rate stats before running the automatic cache resize code,
 *      if it is enabled.
 *
 *	At the end of an epoch, we discard prior hit rate data and start
 * 	collecting afresh.  The epoch_length must lie in the closed
 *	interval [H5C__MIN_AR_EPOCH_LENGTH, H5C__MAX_AR_EPOCH_LENGTH].
 *
 *
 * Cache size increase control fields:
 *
 * incr_mode: Instance of the H5C_cache_incr_mode enumerated type whose
 *	value indicates how we determine whether the cache size should be
 *	increased.  At present there are two possible values:
 *
 *	H5C_incr__off:	Don't attempt to increase the size of the cache
 *		automatically.
 *
 *		When this increment mode is selected, the remaining fields
 *		in the cache size increase section ar ignored.
 *
 *	H5C_incr__threshold: Attempt to increase the size of the cache
 *		whenever the average hit rate over the last epoch drops
 *		below the value supplied in the lower_hr_threshold
 *		field.
 *
 *		Note that this attempt will fail if the cache is already
 *		at its maximum size, or if the cache is not already using
 *		all available space.
 *
 * lower_hr_threshold: Lower hit rate threshold.  If the increment mode
 *	(incr_mode) is H5C_incr__threshold and the hit rate drops below the
 *	value supplied in this field in an epoch, increment the cache size by
 *	size_increment.  Note that cache size may not be incremented above
 *	max_size, and that the increment may be further restricted by the
 *	max_increment field if it is enabled.
 *
 *	When enabled, this field must contain a value in the range [0.0, 1.0].
 *	Depending on the incr_mode selected, it may also have to be less than
 *	upper_hr_threshold.
 *
 * increment:  Double containing the multiplier used to derive the new
 *	cache size from the old if a cache size increment is triggered.
 *      The increment must be greater than 1.0, and should not exceed 2.0.
 *
 *	The new cache size is obtained by multiplying the current max cache
 *	size by the increment, and then clamping to max_size and to stay
 *	within the max_increment as necessary.
 *
 * apply_max_increment:  Boolean flag indicating whether the max_increment
 *	field should be used to limit the maximum cache size increment.
 *
 * max_increment: If enabled by the apply_max_increment field described
 *	above, this field contains the maximum number of bytes by which the
 *	cache size can be increased in a single re-size.
 *
 * flash_incr_mode:  Instance of the H5C_cache_flash_incr_mode enumerated
 *      type whose value indicates whether and by what algorithm we should
 *      make flash increases in the size of the cache to accomodate insertion
 *      of large entries and large increases in the size of a single entry.
 *
 *      The addition of the flash increment mode was occasioned by performance
 *      problems that appear when a local heap is increased to a size in excess
 *      of the current cache size.  While the existing re-size code dealt with
 *      this eventually, performance was very bad for the remainder of the
 *      epoch.
 *
 *      At present, there are two possible values for the flash_incr_mode:
 *
 *      H5C_flash_incr__off:  Don't perform flash increases in the size of
 *              the cache.
 *
 *      H5C_flash_incr__add_space:  Let x be either the size of a newly
 *              newly inserted entry, or the number of bytes by which the
 *              size of an existing entry has been increased.
 *
 *              If
 *                   x > flash_threshold * current max cache size,
 *
 *              increase the current maximum cache size by x * flash_multiple
 *              less any free space in the cache, and start a new epoch.  For
 *              now at least, pay no attention to the maximum increment.
 *
 *
 *      With a little thought, it should be obvious that the above flash
 *      cache size increase algorithm is not sufficient for all
 *      circumstances -- for example, suppose the user round robins through
 *      (1/flash_threshold) +1 groups, adding one data set to each on each
 *      pass.  Then all will increase in size at about the same time, requiring
 *      the max cache size to at least double to maintain acceptable
 *      performance, however the above flash increment algorithm will not be
 *      triggered.
 *
 *      Hopefully, the add space algorithm detailed above will be sufficient
 *      for the performance problems encountered to date.  However, we should
 *      expect to revisit the issue.
 *
 * flash_multiple: Double containing the multiple described above in the
 *      H5C_flash_incr__add_space section of the discussion of the
 *      flash_incr_mode section.  This field is ignored unless flash_incr_mode
 *      is H5C_flash_incr__add_space.
 *
 * flash_threshold: Double containing the factor by which current max cache
 * 	size is multiplied to obtain the size threshold for the add_space
 * 	flash increment algorithm.  The field is ignored unless
 * 	flash_incr_mode is H5C_flash_incr__add_space.
 *
 *
 * Cache size decrease control fields:
 *
 * decr_mode: Instance of the H5C_cache_decr_mode enumerated type whose
 *	value indicates how we determine whether the cache size should be
 *	decreased.  At present there are four possibilities.
 *
 *	H5C_decr__off:	Don't attempt to decrease the size of the cache
 *		automatically.
 *
 *		When this increment mode is selected, the remaining fields
 *		in the cache size decrease section are ignored.
 *
 *	H5C_decr__threshold: Attempt to decrease the size of the cache
 *		whenever the average hit rate over the last epoch rises
 *		above the value	supplied in the upper_hr_threshold
 *		field.
 *
 *	H5C_decr__age_out:  At the end of each epoch, search the cache for
 *		entries that have not been accessed for at least the number
 *		of epochs specified in the epochs_before_eviction field, and
 *		evict these entries.  Conceptually, the maximum cache size
 *		is then decreased to match the new actual cache size.  However,
 *		this reduction may be modified by the min_size, the
 *		max_decrement, and/or the empty_reserve.
 *
 *	H5C_decr__age_out_with_threshold:  Same as age_out, but we only
 *		attempt to reduce the cache size when the hit rate observed
 *		over the last epoch exceeds the value provided in the
 *		upper_hr_threshold field.
 *
 * upper_hr_threshold: Upper hit rate threshold.  The use of this field
 *	varies according to the current decr_mode:
 *
 *	H5C_decr__off or H5C_decr__age_out:  The value of this field is
 *		ignored.
 *
 *	H5C_decr__threshold:  If the hit rate exceeds this threshold in any
 *		epoch, attempt to decrement the cache size by size_decrement.
 *
 *		Note that cache size may not be decremented below min_size.
 *
 *		Note also that if the upper_threshold is 1.0, the cache size
 *		will never be reduced.
 *
 *	H5C_decr__age_out_with_threshold:  If the hit rate exceeds this
 *		threshold in any epoch, attempt to reduce the cache size
 *		by evicting entries that have not been accessed for more
 *		than the specified number of epochs.
 *
 * decrement: This field is only used when the decr_mode is
 *	H5C_decr__threshold.
 *
 *	The field is a double containing the multiplier used to derive the
 *	new cache size from the old if a cache size decrement is triggered.
 *	The decrement must be in the range 0.0 (in which case the cache will
 *      try to contract to its minimum size) to 1.0 (in which case the
 *      cache will never shrink).
 *
 * apply_max_decrement:  Boolean flag used to determine whether decrements
 *	in cache size are to be limited by the max_decrement field.
 *
 * max_decrement: Maximum number of bytes by which the cache size can be
 *	decreased in a single re-size.  Note that decrements may also be
 *	restricted by the min_size of the cache, and (in age out modes) by
 *	the empty_reserve field.
 *
 * epochs_before_eviction:  Integer field used in H5C_decr__age_out and
 *	H5C_decr__age_out_with_threshold decrement modes.
 *
 *	This field contains the number of epochs an entry must remain
 *	unaccessed before it is evicted in an attempt to reduce the
 *	cache size.  If applicable, this field must lie in the range
 *	[1, H5C__MAX_EPOCH_MARKERS].
 *
 * apply_empty_reserve:  Boolean field controlling whether the empty_reserve
 *	field is to be used in computing the new cache size when the
 *	decr_mode is H5C_decr__age_out or H5C_decr__age_out_with_threshold.
 *
 * empty_reserve:  To avoid a constant racheting down of cache size by small
 *	amounts in the H5C_decr__age_out and H5C_decr__age_out_with_threshold
 *	modes, this field allows one to require that any cache size
 *	reductions leave the specified fraction of unused space in the cache.
 *
 *	The value of this field must be in the range [0.0, 1.0].  I would
 *	expect typical values to be in the range of 0.01 to 0.1.
 *
 ****************************************************************************/

#define H5C_RESIZE_CFG__VALIDATE_GENERAL        0x1
#define H5C_RESIZE_CFG__VALIDATE_INCREMENT      0x2
#define H5C_RESIZE_CFG__VALIDATE_DECREMENT      0x4
#define H5C_RESIZE_CFG__VALIDATE_INTERACTIONS   0x8
#define H5C_RESIZE_CFG__VALIDATE_ALL      \
(                                         \
    H5C_RESIZE_CFG__VALIDATE_GENERAL |    \
    H5C_RESIZE_CFG__VALIDATE_INCREMENT |  \
    H5C_RESIZE_CFG__VALIDATE_DECREMENT |  \
    H5C_RESIZE_CFG__VALIDATE_INTERACTIONS \
)

#define H5C__CURR_AUTO_SIZE_CTL_VER		1
#define H5C__CURR_AUTO_RESIZE_RPT_FCN_VER	1

#define H5C__MAX_EPOCH_MARKERS  		10

#define H5C__DEF_AR_UPPER_THRESHHOLD		0.9999
#define H5C__DEF_AR_LOWER_THRESHHOLD		0.9
#define H5C__DEF_AR_MAX_SIZE			((size_t)(16 * 1024 * 1024))
#define H5C__DEF_AR_INIT_SIZE			((size_t)( 1 * 1024 * 1024))
#define H5C__DEF_AR_MIN_SIZE			((size_t)( 1 * 1024 * 1024))
#define H5C__DEF_AR_MIN_CLEAN_FRAC		0.5
#define H5C__DEF_AR_INCREMENT			2.0
#define H5C__DEF_AR_MAX_INCREMENT		((size_t)( 2 * 1024 * 1024))
#define H5C__DEF_AR_FLASH_MULTIPLE              1.0
#define H5C__DEV_AR_FLASH_THRESHOLD             0.25
#define H5C__DEF_AR_DECREMENT			0.9
#define H5C__DEF_AR_MAX_DECREMENT		((size_t)( 1 * 1024 * 1024))
#define H5C__DEF_AR_EPCHS_B4_EVICT		3
#define H5C__DEF_AR_EMPTY_RESERVE		0.05
#define H5C__MIN_AR_EPOCH_LENGTH		100
#define H5C__DEF_AR_EPOCH_LENGTH		50000
#define H5C__MAX_AR_EPOCH_LENGTH		1000000

enum H5C_resize_status
{
    in_spec,
    increase,
    flash_increase,
    decrease,
    at_max_size,
    at_min_size,
    increase_disabled,
    decrease_disabled,
    not_full
}; /* enum H5C_resize_conditions */

typedef void (*H5C_auto_resize_rpt_fcn)(H5C_t * cache_ptr,
                                        int32_t version,
                                        double hit_rate,
                                        enum H5C_resize_status status,
                                        size_t old_max_cache_size,
                                        size_t new_max_cache_size,
                                        size_t old_min_clean_size,
                                        size_t new_min_clean_size);

typedef struct H5C_auto_size_ctl_t
{
    /* general configuration fields: */
    int32_t				version;
    H5C_auto_resize_rpt_fcn		rpt_fcn;

    hbool_t				set_initial_size;
    size_t				initial_size;

    double				min_clean_fraction;

    size_t				max_size;
    size_t				min_size;

    int64_t				epoch_length;


    /* size increase control fields: */
    enum H5C_cache_incr_mode		incr_mode;

    double				lower_hr_threshold;

    double				increment;

    hbool_t				apply_max_increment;
    size_t				max_increment;

    enum H5C_cache_flash_incr_mode      flash_incr_mode;
    double                              flash_multiple;
    double                              flash_threshold;


    /* size decrease control fields: */
    enum H5C_cache_decr_mode		decr_mode;

    double				upper_hr_threshold;

    double				decrement;

    hbool_t				apply_max_decrement;
    size_t				max_decrement;

    int32_t				epochs_before_eviction;

    hbool_t				apply_empty_reserve;
    double				empty_reserve;

} H5C_auto_size_ctl_t;


/*
 * Library prototypes.
 */

/* #defines of flags used in the flags parameters in some of the
 * following function calls.  Note that not all flags are applicable
 * to all function calls.  Flags that don't apply to a particular
 * function are ignored in that function.
 *
 * These flags apply to all function calls:
 *
 * 	H5C__NO_FLAGS_SET (generic "no flags set" for all fcn calls)
 *
 *
 * These flags apply to H5C_insert_entry():
 *
 * 	H5C__SET_FLUSH_MARKER_FLAG
 * 	H5C__PIN_ENTRY_FLAG
 *
 * These flags apply to H5C_protect()
 *
 * 	H5C__READ_ONLY_FLAG
 *
 * These flags apply to H5C_unprotect():
 *
 * 	H5C__SET_FLUSH_MARKER_FLAG
 * 	H5C__DELETED_FLAG
 * 	H5C__DIRTIED_FLAG
 * 	H5C__PIN_ENTRY_FLAG
 * 	H5C__UNPIN_ENTRY_FLAG
 * 	H5C__FREE_FILE_SPACE_FLAG
 *      H5C__TAKE_OWNERSHIP_FLAG
 *
 * These flags apply to H5C_expunge_entry():
 *
 * 	H5C__FREE_FILE_SPACE_FLAG
 *
 * These flags apply to H5C_flush_cache():
 *
 * 	H5C__FLUSH_INVALIDATE_FLAG
 * 	H5C__FLUSH_CLEAR_ONLY_FLAG
 * 	H5C__FLUSH_MARKED_ENTRIES_FLAG
 *	H5C__FLUSH_IGNORE_PROTECTED_FLAG (can't use this flag in combination
 *					  with H5C__FLUSH_INVALIDATE_FLAG)
 *
 * These flags apply to H5C_flush_single_entry():
 *
 * 	H5C__FLUSH_INVALIDATE_FLAG
 * 	H5C__FLUSH_CLEAR_ONLY_FLAG
 * 	H5C__FLUSH_MARKED_ENTRIES_FLAG
 *      H5C__TAKE_OWNERSHIP_FLAG
 */

#define H5C__NO_FLAGS_SET			0x0000
#define H5C__SET_FLUSH_MARKER_FLAG		0x0001
#define H5C__DELETED_FLAG			0x0002
#define H5C__DIRTIED_FLAG			0x0004
#define H5C__PIN_ENTRY_FLAG			0x0008
#define H5C__UNPIN_ENTRY_FLAG			0x0010
#define H5C__FLUSH_INVALIDATE_FLAG		0x0020
#define H5C__FLUSH_CLEAR_ONLY_FLAG		0x0040
#define H5C__FLUSH_MARKED_ENTRIES_FLAG		0x0080
#define H5C__FLUSH_IGNORE_PROTECTED_FLAG	0x0100
#define H5C__READ_ONLY_FLAG			0x0200
#define H5C__FREE_FILE_SPACE_FLAG		0x0800
#define H5C__TAKE_OWNERSHIP_FLAG		0x1000

#ifdef H5_HAVE_PARALLEL
H5_DLL herr_t H5C_apply_candidate_list(H5F_t * f,
                                       hid_t primary_dxpl_id,
                                       hid_t secondary_dxpl_id,
                                       H5C_t * cache_ptr,
                                       int num_candidates,
                                       haddr_t * candidates_list_ptr,
                                       int mpi_rank,
                                       int mpi_size);

H5_DLL herr_t H5C_construct_candidate_list__clean_cache(H5C_t * cache_ptr);

H5_DLL herr_t H5C_construct_candidate_list__min_clean(H5C_t * cache_ptr);
#endif /* H5_HAVE_PARALLEL */

H5_DLL H5C_t * H5C_create(size_t                     max_cache_size,
                          size_t                     min_clean_size,
                          int                        max_type_id,
			  const char *               (* type_name_table_ptr),
                          H5C_write_permitted_func_t check_write_permitted,
                          hbool_t                    write_permitted,
                          H5C_log_flush_func_t       log_flush,
                          void *                     aux_ptr);

H5_DLL void H5C_def_auto_resize_rpt_fcn(H5C_t * cache_ptr,
                                        int32_t version,
                                        double hit_rate,
                                        enum H5C_resize_status status,
                                        size_t old_max_cache_size,
                                        size_t new_max_cache_size,
                                        size_t old_min_clean_size,
                                        size_t new_min_clean_size);

H5_DLL herr_t H5C_dest(H5F_t * f,
                       hid_t   primary_dxpl_id,
                       hid_t   secondary_dxpl_id);

H5_DLL herr_t H5C_expunge_entry(H5F_t *             f,
		                hid_t               primary_dxpl_id,
                                hid_t               secondary_dxpl_id,
                                const H5C_class_t * type,
                                haddr_t             addr,
                                unsigned            flags);

H5_DLL herr_t H5C_flush_cache(H5F_t *  f,
                              hid_t    primary_dxpl_id,
                              hid_t    secondary_dxpl_id,
                              unsigned flags);

H5_DLL herr_t H5C_flush_to_min_clean(H5F_t * f,
                                     hid_t   primary_dxpl_id,
                                     hid_t   secondary_dxpl_id);

H5_DLL herr_t H5C_get_cache_auto_resize_config(const H5C_t * cache_ptr,
                                               H5C_auto_size_ctl_t *config_ptr);

H5_DLL herr_t H5C_get_cache_size(H5C_t * cache_ptr,
                                 size_t * max_size_ptr,
                                 size_t * min_clean_size_ptr,
                                 size_t * cur_size_ptr,
                                 int32_t * cur_num_entries_ptr);

H5_DLL herr_t H5C_get_cache_hit_rate(H5C_t * cache_ptr,
                                     double * hit_rate_ptr);

H5_DLL herr_t H5C_get_entry_status(const H5F_t *f,
                                   haddr_t   addr,
                                   size_t *  size_ptr,
                                   hbool_t * in_cache_ptr,
                                   hbool_t * is_dirty_ptr,
                                   hbool_t * is_protected_ptr,
				   hbool_t * is_pinned_ptr);

H5_DLL herr_t H5C_get_evictions_enabled(const H5C_t * cache_ptr,
                                        hbool_t * evictions_enabled_ptr);

H5_DLL herr_t H5C_get_trace_file_ptr(const H5C_t *cache_ptr,
    FILE **trace_file_ptr_ptr);
H5_DLL herr_t H5C_get_trace_file_ptr_from_entry(const H5C_cache_entry_t *entry_ptr,
    FILE **trace_file_ptr_ptr);

H5_DLL herr_t H5C_insert_entry(H5F_t *             f,
                               hid_t               primary_dxpl_id,
                               hid_t               secondary_dxpl_id,
                               const H5C_class_t * type,
                               haddr_t             addr,
                               void *              thing,
                               unsigned int        flags);

H5_DLL herr_t H5C_mark_entries_as_clean(H5F_t *  f,
                                        hid_t    primary_dxpl_id,
                                        hid_t    secondary_dxpl_id,
                                        int32_t  ce_array_len,
                                        haddr_t *ce_array_ptr);

H5_DLL herr_t H5C_mark_entry_dirty(void *thing);

H5_DLL herr_t H5C_move_entry(H5C_t *             cache_ptr,
                               const H5C_class_t * type,
                               haddr_t             old_addr,
                               haddr_t             new_addr);

H5_DLL herr_t H5C_pin_protected_entry(void *thing);

H5_DLL void * H5C_protect(H5F_t *             f,
                          hid_t               primary_dxpl_id,
                          hid_t               secondary_dxpl_id,
			  const H5C_class_t * type,
                          haddr_t             addr,
                          void *              udata,
                          unsigned            flags);

H5_DLL herr_t H5C_reset_cache_hit_rate_stats(H5C_t * cache_ptr);

H5_DLL herr_t H5C_resize_entry(void *thing, size_t new_size);

H5_DLL herr_t H5C_set_cache_auto_resize_config(H5C_t *cache_ptr,
                                               H5C_auto_size_ctl_t *config_ptr);

H5_DLL herr_t H5C_set_evictions_enabled(H5C_t *cache_ptr,
                                        hbool_t evictions_enabled);

H5_DLL herr_t H5C_set_prefix(H5C_t * cache_ptr, char * prefix);

H5_DLL herr_t H5C_set_trace_file_ptr(H5C_t * cache_ptr,
		                     FILE * trace_file_ptr);

H5_DLL herr_t H5C_stats(H5C_t * cache_ptr,
                        const char * cache_name,
                        hbool_t display_detailed_stats);

H5_DLL void H5C_stats__reset(H5C_t * cache_ptr);

H5_DLL herr_t H5C_dump_cache(H5C_t * cache_ptr,
                             const char *  cache_name);

H5_DLL herr_t H5C_unpin_entry(void *thing);

H5_DLL herr_t H5C_unprotect(H5F_t *             f,
                            hid_t               primary_dxpl_id,
                            hid_t               secondary_dxpl_id,
                            const H5C_class_t * type,
                            haddr_t             addr,
                            void *              thing,
                            unsigned int        flags);

H5_DLL herr_t H5C_validate_resize_config(H5C_auto_size_ctl_t * config_ptr,
                                         unsigned int tests);

#endif /* !_H5Cprivate_H */