This file is indexed.

/usr/include/ITK-4.5/vnl/vnl_bignum.h is in libinsighttoolkit4-dev 4.5.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
// This is core/vnl/vnl_bignum.h
#ifndef vnl_bignum_h_
#define vnl_bignum_h_
//:
// \file
// \brief Infinite precision integers
//
// The vnl_bignum class implements near-infinite precision integers
// and arithmetic by using a dynamic bit vector. A
// vnl_bignum object will grow in size as necessary to hold its
// integer value.  Implicit conversion to the system defined
// types: short, int, long, float, double and long double
// is supported by overloaded operator member functions.
// Addition and subtraction operators are performed by
// simple bitwise addition and subtraction on
// unsigned short boundaries with checks for carry flag propagation.
// The multiplication, division, and remainder operations
// utilize the algorithms from Knuth's Volume 2 of "The
// Art of Computer Programming". However, despite the use of
// these algorithms and inline member functions, arithmetic
// operations on vnl_bignum objects are considerably slower than
// the built-in integer types that use hardware integer arithmetic
// capabilities.
//
// The vnl_bignum class supports the parsing of character string
// representations of all the literal number formats, PLUS the
// strings "Infinity", "+Infinity" and "-Infinity".  The following
// table shows an example of a character string
// representation on the left and a brief description of the
// interpreted meaning on the right:
//
// Character String  Interpreted Meaning
// 1234              1234
// 1234l             1234
// 1234L             1234
// 1234u             1234
// 1234U             1234
// 1234ul            1234
// 1234UL            1234
// 01234             1234 in octal (leading 0)
// 0x1234            1234 in hexadecimal (leading 0x)
// 0X1234            1234 in hexadecimal (leading 0X)
// 123.4             123 (value truncated)
// 1.234e2           123 (exponent expanded/truncated)
// 1.234e-5          0 (truncated value less than 1)
// Infinity          +Inf ("maxval", obeying all conventional arithmetic)
//
// \author
// Copyright (C) 1991 Texas Instruments Incorporated.
//
// Permission is granted to any individual or institution to use, copy, modify,
// and distribute this software, provided that this complete copyright and
// permission notice is maintained, intact, in all copies and supporting
// documentation.
//
// Texas Instruments Incorporated provides this software "as is" without
// express or implied warranty.
//
// \verbatim
// Modifications
//  Peter Vanroose, 24 January 2002: ported to vnl from COOL
//  Peter Vanroose, 7 September 2002: added "Infinity" (incl. all arithmetic)
//  Ian Scott, 23 March 2004: made ++ and -- much more efficient.
//  Peter Vanroose, March 2008: try to fix divide bug: partially succeeded
//  Peter Vanroose, June 2009: finally fixed this long standing divide bug
// \endverbatim

#include <vcl_iostream.h>
#include <vcl_string.h>

class vnl_bignum;

// These are all auxiliary functions:

int magnitude_cmp(const vnl_bignum&, const vnl_bignum&);
void add(const vnl_bignum&, const vnl_bignum&, vnl_bignum&);
void subtract(const vnl_bignum&, const vnl_bignum&, vnl_bignum&);
void multiply_aux(const vnl_bignum&, unsigned short d, vnl_bignum&, unsigned short i);
unsigned short normalize(const vnl_bignum&, const vnl_bignum&, vnl_bignum&, vnl_bignum&);
void divide_aux(const vnl_bignum&, unsigned short, vnl_bignum&, unsigned short&);
unsigned short estimate_q_hat(const vnl_bignum&, const vnl_bignum&, unsigned short);
unsigned short multiply_subtract(vnl_bignum&, const vnl_bignum&, unsigned short, unsigned short);
void divide(const vnl_bignum&, const vnl_bignum&, vnl_bignum&, vnl_bignum&);
vnl_bignum left_shift(const vnl_bignum& b1, int l);
vnl_bignum right_shift(const vnl_bignum& b1, int l);
void decrement (vnl_bignum& bnum);
void increment (vnl_bignum& bnum);

//: formatted output
// \relatesalso vnl_bignum
vcl_ostream& operator<<(vcl_ostream& s, vnl_bignum const& r);

//: simple input
// \relatesalso vnl_bignum
vcl_istream& operator>>(vcl_istream& s, vnl_bignum& r);

//: Infinite precision integers
//
// The vnl_bignum class implements near-infinite precision integers
// and arithmetic by using a dynamic bit vector. A
// vnl_bignum object will grow in size as necessary to hold its
// integer value.  Implicit conversion to the system defined
// types: short, int, long, float, double and long double
// is supported by overloaded operator member functions.
// Addition and subtraction operators are performed by
// simple bitwise addition and subtraction on
// unsigned short boundaries with checks for carry flag propagation.
// The multiplication, division, and remainder operations
// utilize the algorithms from Knuth's Volume 2 of "The
// Art of Computer Programming". However, despite the use of
// these algorithms and inline member functions, arithmetic
// operations on vnl_bignum objects are considerably slower than
// the built-in integer types that use hardware integer arithmetic
// capabilities.
//
// The vnl_bignum class supports the parsing of character string
// representations of all the literal number formats, PLUS the
// strings "Infinity", "+Infinity" and "-Infinity".  The following
// table shows an example of a character string
// representation on the left and a brief description of the
// interpreted meaning on the right:
//
// Character String  Interpreted Meaning
// 1234              1234
// 1234l             1234
// 1234L             1234
// 1234u             1234
// 1234U             1234
// 1234ul            1234
// 1234UL            1234
// 01234             1234 in octal (leading 0)
// 0x1234            1234 in hexadecimal (leading 0x)
// 0X1234            1234 in hexadecimal (leading 0X)
// 123.4             123 (value truncated)
// 1.234e2           123 (exponent expanded/truncated)
// 1.234e-5          0 (truncated value less than 1)
// Infinity          +Inf ("maxval", obeying all conventional arithmetic)
//
class vnl_bignum
{
  unsigned short count; // Number of data elements (never 0 except for "0")
  int sign;             // Sign of vnl_bignum (+1 or -1, nothing else!!)
  unsigned short* data; // Pointer to data value
 public:
  vnl_bignum();                        // Void constructor
  vnl_bignum(long);                    // Long constructor
  vnl_bignum(unsigned long);           // Unsigned Long constructor
  vnl_bignum(int);                     // Int constructor
  vnl_bignum(unsigned int);            // Unsigned Int constructor
  vnl_bignum(float);                   // Float constructor
  vnl_bignum(double);                  // Double constructor
  vnl_bignum(long double);             // Long Double constructor
  vnl_bignum(vnl_bignum const&);       // Copy constructor
  vnl_bignum(const char*);             // String constructor
  ~vnl_bignum();                       // Destructor

  operator short() const;              // Implicit type conversion
  operator int() const;                // Implicit type conversion
  operator long() const;               // Implicit type conversion
  operator float() const;              // Implicit type conversion
  operator double() const;             // Implicit type conversion
  operator long double() const;        // Implicit type conversion
  inline operator short() { return ((const vnl_bignum*)this)->operator short(); }
  inline operator int() { return ((const vnl_bignum*)this)->operator int(); }
  inline operator long() { return ((const vnl_bignum*)this)->operator long(); }
  inline operator float() { return ((const vnl_bignum*)this)->operator float(); }
  inline operator double() { return ((const vnl_bignum*)this)->operator double(); }
  inline operator long double() { return ((const vnl_bignum*)this)->operator long double(); }

  vnl_bignum operator-() const;        // Unary minus operator
  inline vnl_bignum operator+() const { return *this; } // Unary plus operator

  vnl_bignum& operator=(const vnl_bignum&); // Assignment operator

  vnl_bignum operator<<(int l) const;  // Bit shift
  vnl_bignum operator>>(int l) const;  // Bit shift
  vnl_bignum operator+(vnl_bignum const& r) const;
  inline vnl_bignum& operator+=(vnl_bignum const& r) { return *this = operator+(r); }
  inline vnl_bignum& operator-=(vnl_bignum const& r) { return *this = operator+(-r); }
  vnl_bignum& operator*=(vnl_bignum const& r);
  vnl_bignum& operator/=(vnl_bignum const& r);
  vnl_bignum& operator%=(vnl_bignum const& r);
  inline vnl_bignum& operator<<=(int l) { return *this = *this << l; }
  inline vnl_bignum& operator>>=(int l) { return *this = *this >> l; }

  //: prefix increment (++b)
  vnl_bignum& operator++();
  //: decrement
  vnl_bignum& operator--();
  //: postfix increment (b++)
  inline vnl_bignum operator++(int) { vnl_bignum b=(*this); operator++(); return b; }
  //: decrement
  inline vnl_bignum operator--(int) { vnl_bignum b=(*this); operator--(); return b; }

  bool operator==(vnl_bignum const&) const; // equality
  bool operator< (vnl_bignum const&) const; // less than
  inline bool operator!=(vnl_bignum const& r) const { return !operator==(r); }
  inline bool operator> (vnl_bignum const& r) const { return r<(*this); }
  inline bool operator<=(vnl_bignum const& r) const { return !operator>(r); }
  inline bool operator>=(vnl_bignum const& r) const { return !operator<(r); }
  inline bool operator==(long r) const { return operator==(vnl_bignum(r)); }
  inline bool operator!=(long r) const { return !operator==(vnl_bignum(r)); }
  inline bool operator< (long r) const { return operator<(vnl_bignum(r)); }
  inline bool operator> (long r) const { return vnl_bignum(r) < (*this); }
  inline bool operator<=(long r) const { return !operator>(vnl_bignum(r)); }
  inline bool operator>=(long r) const { return !operator<(vnl_bignum(r)); }
  inline bool operator==(int r) const { return operator==(long(r)); }
  inline bool operator!=(int r) const { return !operator==(long(r)); }
  inline bool operator< (int r) const { return operator<(long(r)); }
  inline bool operator> (int r) const { return vnl_bignum(long(r)) < (*this); }
  inline bool operator<=(int r) const { return !operator>(long(r)); }
  inline bool operator>=(int r) const { return !operator<(long(r)); }
  inline bool operator==(double r) const { return r == this->operator double(); }
  inline bool operator!=(double r) const { return r != this->operator double(); }
  inline bool operator< (double r) const { return r > this->operator double(); }
  inline bool operator> (double r) const { return r < this->operator double(); }
  inline bool operator<=(double r) const { return r >= this->operator double(); }
  inline bool operator>=(double r) const { return r <= this->operator double(); }
  inline bool operator==(long double r) const { return r == this->operator long double(); }
  inline bool operator!=(long double r) const { return r != this->operator long double(); }
  inline bool operator< (long double r) const { return r > this->operator long double(); }
  inline bool operator> (long double r) const { return r < this->operator long double(); }
  inline bool operator<=(long double r) const { return r >= this->operator long double(); }
  inline bool operator>=(long double r) const { return r <= this->operator long double(); }

  inline vnl_bignum abs() const { return operator<(0L) ? operator-() : *this; }

  // "+/-Inf" is represented as: count=1, data[0]=0, sign=+/-1 :
  inline bool is_infinity() const { return count==1 && data[0]==0; }
  inline bool is_plus_infinity() const { return is_infinity() && sign==1; }
  inline bool is_minus_infinity() const { return is_infinity() && sign==-1; }

  void dump(vcl_ostream& = vcl_cout) const;     // Dump contents of vnl_bignum

  friend int magnitude_cmp(const vnl_bignum&, const vnl_bignum&);
  friend void add(const vnl_bignum&, const vnl_bignum&, vnl_bignum&);
  friend void subtract(const vnl_bignum&, const vnl_bignum&, vnl_bignum&);
  friend void increment (vnl_bignum& bnum);
  friend void decrement (vnl_bignum& bnum);
  friend void multiply_aux(const vnl_bignum&, unsigned short, vnl_bignum&, unsigned short);
  friend unsigned short normalize(const vnl_bignum&, const vnl_bignum&, vnl_bignum&, vnl_bignum&);
  friend void divide_aux(const vnl_bignum&, unsigned short, vnl_bignum&, unsigned short&);
  friend unsigned short estimate_q_hat(const vnl_bignum&, const vnl_bignum&, unsigned short);
  friend unsigned short multiply_subtract(vnl_bignum&, const vnl_bignum&, unsigned short, unsigned short);
  friend void divide(const vnl_bignum&, const vnl_bignum&, vnl_bignum&, vnl_bignum&);
  friend vnl_bignum left_shift(const vnl_bignum& b1, int l);
  friend vnl_bignum right_shift(const vnl_bignum& b1, int l);
  friend vcl_ostream& operator<< (vcl_ostream&, const vnl_bignum&);
  friend vcl_istream& operator>> (vcl_istream&, vnl_bignum&);
  friend vcl_string& vnl_bignum_to_string (vcl_string& s, const vnl_bignum& b);
  friend vnl_bignum& vnl_bignum_from_string (vnl_bignum& b, const vcl_string& s);

 private:
  void xtoBigNum(const char *s);       // convert hex to vnl_bignum
  int  dtoBigNum(const char *s);       // convert decimal to vnl_bignum
  void otoBigNum(const char *s);       // convert octal to vnl_bignum
  void exptoBigNum(const char *s);     // convert exponential to vnl_bignum

  void resize(short);                  // Resize vnl_bignum data
  vnl_bignum& trim();                  // Trim vnl_bignum data
};


//: Convert the number to a decimal representation in a string.
// \relatesalso vnl_bignum
vcl_string& vnl_bignum_to_string (vcl_string& s, const vnl_bignum& b);

//: Convert the number from a decimal representation in a string.
// \relatesalso vnl_bignum
vnl_bignum& vnl_bignum_from_string (vnl_bignum& b, const vcl_string& s);

//: Returns the sum of two bignum numbers.
// \relatesalso vnl_bignum
inline vnl_bignum operator+(vnl_bignum const& r1, long r2) { return r1+vnl_bignum(r2); }
inline vnl_bignum operator+(vnl_bignum const& r1, int r2) { return r1+long(r2); }
inline vnl_bignum operator+(vnl_bignum const& r1, double r2) { return r1+vnl_bignum(r2); }
inline vnl_bignum operator+(vnl_bignum const& r1, long double r2) { return r1+vnl_bignum(r2); }
inline vnl_bignum operator+(long r2, vnl_bignum const& r1) { return r1 + r2; }
inline vnl_bignum operator+(int r2, vnl_bignum const& r1) { return r1 + r2; }
inline vnl_bignum operator+(double r2, vnl_bignum const& r1) { return r1 + r2; }
inline vnl_bignum operator+(long double r2, vnl_bignum const& r1) { return r1 + r2; }

//: Returns the difference of two bignum numbers.
// \relatesalso vnl_bignum
inline vnl_bignum operator-(vnl_bignum const& r1, vnl_bignum const& r2) { return r1 + (-r2); }
inline vnl_bignum operator-(vnl_bignum const& r1, long r2) { return r1 + (-r2); }
inline vnl_bignum operator-(vnl_bignum const& r1, int r2) { return r1 + (-r2); }
inline vnl_bignum operator-(vnl_bignum const& r1, double r2) { return r1 + (-r2); }
inline vnl_bignum operator-(vnl_bignum const& r1, long double r2) { return r1 + (-r2); }
inline vnl_bignum operator-(long r2, vnl_bignum const& r1) { return -(r1 + (-r2)); }
inline vnl_bignum operator-(int r2, vnl_bignum const& r1) { return -(r1 + (-r2)); }
inline vnl_bignum operator-(double r2, vnl_bignum const& r1) { return -(r1 + (-r2)); }
inline vnl_bignum operator-(long double r2, vnl_bignum const& r1) { return -(r1 + (-r2)); }

//: Returns the product of two bignum numbers.
// \relatesalso vnl_bignum
inline vnl_bignum operator*(vnl_bignum const& r1, vnl_bignum const& r2)
{
  vnl_bignum result(r1); return result *= r2;
}

inline vnl_bignum operator*(vnl_bignum const& r1, long r2)
{
  vnl_bignum result(r1); return result *= vnl_bignum(r2);
}

inline vnl_bignum operator*(vnl_bignum const& r1, int r2)
{
  vnl_bignum result(r1); return result *= (long)r2;
}

inline vnl_bignum operator*(vnl_bignum const& r1, double r2)
{
  vnl_bignum result(r1); return result *= (vnl_bignum)r2;
}

inline vnl_bignum operator*(vnl_bignum const& r1, long double r2)
{
  vnl_bignum result(r1); return result *= (vnl_bignum)r2;
}

inline vnl_bignum operator*(long r2, vnl_bignum const& r1)
{
  vnl_bignum result(r1); return result *= r2;
}

inline vnl_bignum operator*(int r2, vnl_bignum const& r1)
{
  vnl_bignum result(r1); return result *= (long)r2;
}

inline vnl_bignum operator*(double r2, vnl_bignum const& r1)
{
  vnl_bignum result(r1); return result *= (vnl_bignum)r2;
}

inline vnl_bignum operator*(long double r2, vnl_bignum const& r1)
{
  vnl_bignum result(r1); return result *= (vnl_bignum)r2;
}

//: Returns the division of two bignum numbers.
// \relatesalso vnl_bignum
inline vnl_bignum operator/(vnl_bignum const& r1, vnl_bignum const& r2)
{
  vnl_bignum result(r1); return result /= r2;
}

inline vnl_bignum operator/(vnl_bignum const& r1, long r2)
{
  vnl_bignum result(r1); return result /= r2;
}

inline vnl_bignum operator/(vnl_bignum const& r1, int r2)
{
  vnl_bignum result(r1); return result /= (long)r2;
}

inline vnl_bignum operator/(vnl_bignum const& r1, double r2)
{
  vnl_bignum result(r1); return result /= (vnl_bignum)r2;
}

inline vnl_bignum operator/(vnl_bignum const& r1, long double r2)
{
  vnl_bignum result(r1); return result /= (vnl_bignum)r2;
}

inline vnl_bignum operator/(long r1, vnl_bignum const& r2)
{
  vnl_bignum result(r1); return result /= r2;
}

inline vnl_bignum operator/(int r1, vnl_bignum const& r2)
{
  vnl_bignum result((long)r1); return result /= r2;
}

inline vnl_bignum operator/(double r1, vnl_bignum const& r2)
{
  vnl_bignum result(r1); return result /= r2;
}

inline vnl_bignum operator/(long double r1, vnl_bignum const& r2)
{
  vnl_bignum result(r1); return result /= r2;
}

//: Returns the remainder of r1 divided by r2.
// \relatesalso vnl_bignum
inline vnl_bignum operator%(vnl_bignum const& r1, vnl_bignum const& r2)
{
  vnl_bignum result(r1); return result %= r2;
}

inline vnl_bignum operator%(vnl_bignum const& r1, long r2)
{
  vnl_bignum result(r1); return result %= vnl_bignum(r2);
}

inline vnl_bignum operator%(vnl_bignum const& r1, int r2)
{
  vnl_bignum result(r1); return result %= vnl_bignum((long)r2);
}

inline vnl_bignum operator%(long r1, vnl_bignum const& r2)
{
  vnl_bignum result(r1); return result %= r2;
}

inline vnl_bignum operator%(int r1, vnl_bignum const& r2)
{
  vnl_bignum result((long)r1); return result %= r2;
}

// Miscellaneous operators and functions

inline bool operator==(long r1, vnl_bignum const& r2) { return r2==r1; }
inline bool operator!=(long r1, vnl_bignum const& r2) { return r2!=r1; }
inline bool operator< (long r1, vnl_bignum const& r2) { return r2> r1; }
inline bool operator> (long r1, vnl_bignum const& r2) { return r2< r1; }
inline bool operator<=(long r1, vnl_bignum const& r2) { return r2>=r1; }
inline bool operator>=(long r1, vnl_bignum const& r2) { return r2<=r1; }

inline vnl_bignum vnl_math_abs(vnl_bignum const& x) { return x.abs(); }
inline vnl_bignum vnl_math_squared_magnitude(vnl_bignum const& x) { return x*x; }
inline vnl_bignum vnl_math_sqr(vnl_bignum const& x) { return x*x; }
inline bool vnl_math_isnan(vnl_bignum const& ) { return false; }
inline bool vnl_math_isfinite(vnl_bignum const& x) { return ! x.is_infinity(); }

#endif // vnl_bignum_h_