/usr/include/ITK-4.5/vnl/vnl_math.h is in libinsighttoolkit4-dev 4.5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 | // This is core/vnl/vnl_math.h
#ifndef vnl_math_h_
#define vnl_math_h_
#ifdef VCL_NEEDS_PRAGMA_INTERFACE
#pragma interface
#endif
//:
// \file
// \brief Namespace with standard math functions
//
// The vnl_math namespace provides a standard set of the simple mathematical
// functions (min, max, sqr, sgn, rnd, abs), and some predefined constants
// such as pi and e, which are not defined by the ANSI C++ standard.
//
// There are complex versions defined in vnl_complex.h
//
// That's right, M_PI is nonstandard!
//
// Aside from e, pi and their associates the class also defines eps,
// the IEEE double machine precision. This is the smallest number
// eps such that 1+eps != 1.
//
// The operations are overloaded for int, float and double arguments,
// which in combination with inlining can make them more efficient than
// their counterparts in the standard C library.
//
// \author Andrew W. Fitzgibbon, Oxford RRG
// \date July 13, 1996
//
// \verbatim
// Modifications
// 21 May 1998 AWF Removed conditional VCL_IMPLEMENT_STATIC_CONSTS, sometimes gcc needs them.
// LSB (Modifications) 23 Jan 2001 Documentation tidied
// Peter Vanroose - 7 Sep 2002 - maxdouble etc. replaced by vnl_numeric_traits<T>::maxval
// Amitha Perera - 13 Sep 2002 - make constant initialization standards compliant.
// \endverbatim
#include <vcl_cmath.h>
#include "dll.h"
#include <vxl_config.h>
#include <vnl/vnl_config.h> // for VNL_CONFIG_ENABLE_SSE2_ROUNDING
#ifdef VNL_CHECK_FPU_ROUNDING_MODE
# include <vcl_cassert.h>
#endif
// Figure out when the fast implementation can be used
#if VNL_CONFIG_ENABLE_SSE2_ROUNDING && (!defined(__GCCXML__)) && defined(__SSE2__)
# if !VXL_HAS_EMMINTRIN_H
# error "Required file emmintrin.h for SSE2 not found"
# else
# include <emmintrin.h> // sse 2 intrinsics
# define USE_SSE2_IMPL 1
# endif
#else
# define USE_SSE2_IMPL 0
#endif
// Turn on fast impl when using GCC on Intel-based machines with the following exception:
// PPC with Mac OS X
// GCCXML
#if defined(__GNUC__) && (!defined(__GCCXML__)) && (defined(__i386__) || defined(__i386) || defined(__x86_64__) || defined(__x86_64)) && (!defined(__APPLE__) || !defined(__ppc__) )
# define GCC_USE_FAST_IMPL 1
#else
# define GCC_USE_FAST_IMPL 0
#endif
// Turn on fast impl when using msvc on 32 bits windows
#if defined(VCL_VC) && (!defined(__GCCXML__)) && !defined(_WIN64)
# define VC_USE_FAST_IMPL 1
#else
# define VC_USE_FAST_IMPL 0
#endif
//: Type-accessible infinities for use in templates.
template <class T> T vnl_huge_val(T);
double vnl_huge_val(double);
float vnl_huge_val(float);
long int vnl_huge_val(long int);
int vnl_huge_val(int);
short vnl_huge_val(short);
char vnl_huge_val(char);
//: real numerical constants
namespace vnl_math
{
/* Strictly speaking, the static declaration of the constant
* variables is redundant with the implicit behavior in C++
* of objects declared const as defined at:
* "C++98 7.1.1/6: ...Objects declared const and
* not explicitly declared extern have internal
* linkage."
*
* Explicit use of the static key word is used to make the
* code easier to understand.
*/
//: pi, e and all that
static const double e = 2.7182818284590452354;
static const double log2e = 1.4426950408889634074;
static const double log10e = 0.43429448190325182765;
static const double ln2 = 0.69314718055994530942;
static const double ln10 = 2.30258509299404568402;
static const double pi = 3.14159265358979323846;
static const double pi_over_2 = 1.57079632679489661923;
static const double pi_over_4 = 0.78539816339744830962;
static const double one_over_pi = 0.31830988618379067154;
static const double two_over_pi = 0.63661977236758134308;
static const double two_over_sqrtpi = 1.12837916709551257390;
static const double one_over_sqrt2pi = 0.39894228040143267794;
static const double sqrt2 = 1.41421356237309504880;
static const double sqrt1_2 = 0.70710678118654752440;
static const double euler = 0.57721566490153286061;
//: IEEE double machine precision
static const double eps = 2.2204460492503131e-16;
static const double sqrteps = 1.490116119384766e-08;
//: IEEE single machine precision
static const float float_eps = 1.192092896e-07f;
static const float float_sqrteps = 3.4526698307e-4f;
//: Convert an angle to [0, 2Pi) range
double angle_0_to_2pi(double angle);
}
// We do not want to make assumptions about unknown types that happen
// to have conversions to one of the fundamental types. The templated
// versions of isnan, isinf, and isfinite below serve as catch-alls to
// cause linker errors if these functions are invoked with an unknown
// type. However, due to compiler bugs, the templates sometimes match
// too often (see documentation of VCL_TEMPLATE_MATCHES_TOO_OFTEN) and
// are selected over reference-binding overloads like those in
// vnl_rational.h. We add the catch-all templates only if the
// compiler does not have this bug. -- Brad King
// Note that the three template functions below should not be declared "inline"
// since that would override the non-inline specialisations. - PVr.
//
// isnan
inline bool vnl_math_isnan(char) { return false; }
inline bool vnl_math_isnan(short) { return false; }
inline bool vnl_math_isnan(int) { return false; }
inline bool vnl_math_isnan(long) { return false; }
inline bool vnl_math_isnan(long long) { return false; }
inline bool vnl_math_isnan(signed char) { return false; }
inline bool vnl_math_isnan(unsigned char) { return false; }
inline bool vnl_math_isnan(unsigned short) { return false; }
inline bool vnl_math_isnan(unsigned int) { return false; }
inline bool vnl_math_isnan(unsigned long) { return false; }
inline bool vnl_math_isnan(unsigned long long) { return false; }
bool vnl_math_isnan(float);
bool vnl_math_isnan(double);
bool vnl_math_isnan(long double);
#if !VCL_TEMPLATE_MATCHES_TOO_OFTEN
template <class T> bool vnl_math_isnan(T);
#endif
// isinf
inline bool vnl_math_isinf(char) { return false; }
inline bool vnl_math_isinf(short) { return false; }
inline bool vnl_math_isinf(int) { return false; }
inline bool vnl_math_isinf(long) { return false; }
inline bool vnl_math_isinf(long long) { return false; }
inline bool vnl_math_isinf(signed char) { return false; }
inline bool vnl_math_isinf(unsigned char) { return false; }
inline bool vnl_math_isinf(unsigned short) { return false; }
inline bool vnl_math_isinf(unsigned int) { return false; }
inline bool vnl_math_isinf(unsigned long) { return false; }
inline bool vnl_math_isinf(unsigned long long) { return false; }
bool vnl_math_isinf(float);
bool vnl_math_isinf(double);
bool vnl_math_isinf(long double);
#if !VCL_TEMPLATE_MATCHES_TOO_OFTEN
template <class T> bool vnl_math_isinf(T);
#endif
// isfinite
inline bool vnl_math_isfinite(char) { return true; }
inline bool vnl_math_isfinite(short) { return true; }
inline bool vnl_math_isfinite(int) { return true; }
inline bool vnl_math_isfinite(long) { return true; }
inline bool vnl_math_isfinite(long long) { return true; }
inline bool vnl_math_isfinite(signed char) { return true; }
inline bool vnl_math_isfinite(unsigned char) { return true; }
inline bool vnl_math_isfinite(unsigned short) { return true; }
inline bool vnl_math_isfinite(unsigned int) { return true; }
inline bool vnl_math_isfinite(unsigned long) { return true; }
inline bool vnl_math_isfinite(unsigned long long) { return true; }
bool vnl_math_isfinite(float);
bool vnl_math_isfinite(double);
bool vnl_math_isfinite(long double);
#if !VCL_TEMPLATE_MATCHES_TOO_OFTEN
template <class T> bool vnl_math_isfinite(T);
#endif
// vnl_math_rnd_halfinttoeven -- round towards nearest integer
// halfway cases are rounded towards the nearest even integer, e.g.
// vnl_math_rnd_halfinttoeven( 1.5) == 2
// vnl_math_rnd_halfinttoeven(-1.5) == -2
// vnl_math_rnd_halfinttoeven( 2.5) == 2
// vnl_math_rnd_halfinttoeven( 3.5) == 4
//
// We assume that the rounding mode is not changed from the default
// one (or at least that it is always restored to the default one).
#if USE_SSE2_IMPL // Fast sse2 implementation
inline int vnl_math_rnd_halfinttoeven(float x)
{
# if defined(VNL_CHECK_FPU_ROUNDING_MODE) && defined(__GNUC__)
assert(fegetround()==FE_TONEAREST);
# endif
return _mm_cvtss_si32(_mm_set_ss(x));
}
inline int vnl_math_rnd_halfinttoeven(double x)
{
# if defined(VNL_CHECK_FPU_ROUNDING_MODE) && defined(__GNUC__)
assert(fegetround()==FE_TONEAREST);
# endif
return _mm_cvtsd_si32(_mm_set_sd(x));
}
#elif GCC_USE_FAST_IMPL // Fast gcc asm implementation
inline int vnl_math_rnd_halfinttoeven(float x)
{
# ifdef VNL_CHECK_FPU_ROUNDING_MODE
assert(fegetround()==FE_TONEAREST);
# endif
int r;
__asm__ __volatile__ ("fistpl %0" : "=m"(r) : "t"(x) : "st");
return r;
}
inline int vnl_math_rnd_halfinttoeven(double x)
{
# ifdef VNL_CHECK_FPU_ROUNDING_MODE
assert(fegetround()==FE_TONEAREST);
# endif
int r;
__asm__ __volatile__ ("fistpl %0" : "=m"(r) : "t"(x) : "st");
return r;
}
#elif VC_USE_FAST_IMPL // Fast msvc asm implementation
inline int vnl_math_rnd_halfinttoeven(float x)
{
int r;
__asm {
fld x
fistp r
}
return r;
}
inline int vnl_math_rnd_halfinttoeven(double x)
{
int r;
__asm {
fld x
fistp r
}
return r;
}
#else // Vanilla implementation
inline int vnl_math_rnd_halfinttoeven(float x)
{
if (x>=0.f)
{
x+=0.5f;
const int r = static_cast<int>(x);
if ( x != static_cast<float>(r) ) return r;
return 2*(r/2);
}
else
{
x-=0.5f;
const int r = static_cast<int>(x);
if ( x != static_cast<float>(r) ) return r;
return 2*(r/2);
}
}
inline int vnl_math_rnd_halfinttoeven(double x)
{
if (x>=0.)
{
x+=0.5;
const int r = static_cast<int>(x);
if ( x != static_cast<double>(r) ) return r;
return 2*(r/2);
}
else
{
x-=0.5;
const int r = static_cast<int>(x);
if ( x != static_cast<double>(r) ) return r;
return 2*(r/2);
}
}
#endif
// vnl_math_rnd_halfintup -- round towards nearest integer
// halfway cases are rounded upward, e.g.
// vnl_math_rnd_halfintup( 1.5) == 2
// vnl_math_rnd_halfintup(-1.5) == -1
// vnl_math_rnd_halfintup( 2.5) == 3
//
// Be careful: argument absolute value must be less than INT_MAX/2
// for vnl_math_rnd_halfintup to be guaranteed to work.
// We also assume that the rounding mode is not changed from the default
// one (or at least that it is always restored to the default one).
#if USE_SSE2_IMPL || GCC_USE_FAST_IMPL || VC_USE_FAST_IMPL
inline int vnl_math_rnd_halfintup(float x) { return vnl_math_rnd_halfinttoeven(2*x+0.5f)>>1; }
inline int vnl_math_rnd_halfintup(double x) { return vnl_math_rnd_halfinttoeven(2*x+0.5)>>1; }
#else // Vanilla implementation
inline int vnl_math_rnd_halfintup(float x)
{
x+=0.5f;
return static_cast<int>(x>=0.f?x:(x==static_cast<int>(x)?x:x-1.f));
}
inline int vnl_math_rnd_halfintup(double x)
{
x+=0.5;
return static_cast<int>(x>=0.?x:(x==static_cast<int>(x)?x:x-1.));
}
#endif
// vnl_math_rnd -- round towards nearest integer
// halfway cases such as 0.5 may be rounded either up or down
// so as to maximize the efficiency, e.g.
// vnl_math_rnd_halfinttoeven( 1.5) == 1 or 2
// vnl_math_rnd_halfinttoeven(-1.5) == -2 or -1
// vnl_math_rnd_halfinttoeven( 2.5) == 2 or 3
// vnl_math_rnd_halfinttoeven( 3.5) == 3 or 4
//
// We assume that the rounding mode is not changed from the default
// one (or at least that it is always restored to the default one).
#if USE_SSE2_IMPL || GCC_USE_FAST_IMPL || VC_USE_FAST_IMPL
inline int vnl_math_rnd(float x) { return vnl_math_rnd_halfinttoeven(x); }
inline int vnl_math_rnd(double x) { return vnl_math_rnd_halfinttoeven(x); }
#else // Vanilla implementation
inline int vnl_math_rnd(float x) { return x>=0.f?static_cast<int>(x+.5f):static_cast<int>(x-.5f); }
inline int vnl_math_rnd(double x) { return x>=0.0?static_cast<int>(x+0.5):static_cast<int>(x-0.5); }
#endif
// vnl_math_floor -- round towards minus infinity
//
// Be careful: argument absolute value must be less than INT_MAX/2
// for vnl_math_floor to be guaranteed to work.
// We also assume that the rounding mode is not changed from the default
// one (or at least that it is always restored to the default one).
#if USE_SSE2_IMPL // Fast sse2 implementation
inline int vnl_math_floor(float x)
{
# if defined(VNL_CHECK_FPU_ROUNDING_MODE) && defined(__GNUC__)
assert(fegetround()==FE_TONEAREST);
# endif
return _mm_cvtss_si32(_mm_set_ss(2*x-.5f))>>1;
}
inline int vnl_math_floor(double x)
{
# if defined(VNL_CHECK_FPU_ROUNDING_MODE) && defined(__GNUC__)
assert(fegetround()==FE_TONEAREST);
# endif
return _mm_cvtsd_si32(_mm_set_sd(2*x-.5))>>1;
}
#elif GCC_USE_FAST_IMPL // Fast gcc asm implementation
inline int vnl_math_floor(float x)
{
# ifdef VNL_CHECK_FPU_ROUNDING_MODE
assert(fegetround()==FE_TONEAREST);
# endif
int r;
x = 2*x-.5f;
__asm__ __volatile__ ("fistpl %0" : "=m"(r) : "t"(x) : "st");
return r>>1;
}
inline int vnl_math_floor(double x)
{
# ifdef VNL_CHECK_FPU_ROUNDING_MODE
assert(fegetround()==FE_TONEAREST);
# endif
int r;
x = 2*x-.5;
__asm__ __volatile__ ("fistpl %0" : "=m"(r) : "t"(x) : "st");
return r>>1;
}
#elif VC_USE_FAST_IMPL // Fast msvc asm implementation
inline int vnl_math_floor(float x)
{
int r;
x = 2*x-.5f;
__asm {
fld x
fistp r
}
return r>>1;
}
inline int vnl_math_floor(double x)
{
int r;
x = 2*x-.5;
__asm {
fld x
fistp r
}
return r>>1;
}
#else // Vanilla implementation
inline int vnl_math_floor(float x)
{
return static_cast<int>(x>=0.f?x:(x==static_cast<int>(x)?x:x-1.f));
}
inline int vnl_math_floor(double x)
{
return static_cast<int>(x>=0.0?x:(x==static_cast<int>(x)?x:x-1.0));
}
#endif
// vnl_math_ceil -- round towards plus infinity
//
// Be careful: argument absolute value must be less than INT_MAX/2
// for vnl_math_ceil to be guaranteed to work.
// We also assume that the rounding mode is not changed from the default
// one (or at least that it is always restored to the default one).
#if USE_SSE2_IMPL // Fast sse2 implementation
inline int vnl_math_ceil(float x)
{
# if defined(VNL_CHECK_FPU_ROUNDING_MODE) && defined(__GNUC__)
assert(fegetround()==FE_TONEAREST);
# endif
return -(_mm_cvtss_si32(_mm_set_ss(-.5f-2*x))>>1);
}
inline int vnl_math_ceil(double x)
{
# if defined(VNL_CHECK_FPU_ROUNDING_MODE) && defined(__GNUC__)
assert(fegetround()==FE_TONEAREST);
# endif
return -(_mm_cvtsd_si32(_mm_set_sd(-.5-2*x))>>1);
}
#elif GCC_USE_FAST_IMPL // Fast gcc asm implementation
inline int vnl_math_ceil(float x)
{
# ifdef VNL_CHECK_FPU_ROUNDING_MODE
assert(fegetround()==FE_TONEAREST);
# endif
int r;
x = -.5f-2*x;
__asm__ __volatile__ ("fistpl %0" : "=m"(r) : "t"(x) : "st");
return -(r>>1);
}
inline int vnl_math_ceil(double x)
{
# ifdef VNL_CHECK_FPU_ROUNDING_MODE
assert(fegetround()==FE_TONEAREST);
# endif
int r;
x = -.5-2*x;
__asm__ __volatile__ ("fistpl %0" : "=m"(r) : "t"(x) : "st");
return -(r>>1);
}
#elif VC_USE_FAST_IMPL // Fast msvc asm implementation
inline int vnl_math_ceil(float x)
{
int r;
x = -.5f-2*x;
__asm {
fld x
fistp r
}
return -(r>>1);
}
inline int vnl_math_ceil(double x)
{
int r;
x = -.5-2*x;
__asm {
fld x
fistp r
}
return -(r>>1);
}
#else // Vanilla implementation
inline int vnl_math_ceil(float x)
{
return static_cast<int>(x<0.f?x:(x==static_cast<int>(x)?x:x+1.f));
}
inline int vnl_math_ceil(double x)
{
return static_cast<int>(x<0.0?x:(x==static_cast<int>(x)?x:x+1.0));
}
#endif
// abs
inline bool vnl_math_abs(bool x) { return x; }
inline unsigned char vnl_math_abs(unsigned char x) { return x; }
inline unsigned char vnl_math_abs(signed char x) { return x < 0 ? static_cast<unsigned char>(-x) : static_cast<unsigned char>(x); }
inline unsigned char vnl_math_abs(char x) { return static_cast<unsigned char>(x); }
inline unsigned short vnl_math_abs(short x) { return x < 0 ? static_cast<unsigned short>(-x) : static_cast<unsigned short>(x); }
inline unsigned short vnl_math_abs(unsigned short x) { return x; }
inline unsigned int vnl_math_abs(int x) { return x < 0 ? static_cast<unsigned int>(-x) : static_cast<unsigned int>(x); }
inline unsigned int vnl_math_abs(unsigned int x) { return x; }
inline unsigned long vnl_math_abs(long x) { return x < 0L ? static_cast<unsigned long>(-x) : static_cast<unsigned long>(x); }
inline unsigned long vnl_math_abs(unsigned long x) { return x; }
inline unsigned long long vnl_math_abs(long long x) { return x < 0LL ? static_cast<unsigned long long>(-x) : static_cast<unsigned long long>(x); }
inline unsigned long long vnl_math_abs(unsigned long long x) { return x; }
inline float vnl_math_abs(float x) { return x < 0.0f ? -x : x; }
inline double vnl_math_abs(double x) { return x < 0.0 ? -x : x; }
inline long double vnl_math_abs(long double x) { return x < 0.0 ? -x : x; }
// max
inline int vnl_math_max(int x, int y) { return (x > y) ? x : y; }
inline unsigned int vnl_math_max(unsigned int x, unsigned int y) { return (x > y) ? x : y; }
inline long vnl_math_max(long x, long y) { return (x > y) ? x : y; }
inline unsigned long vnl_math_max(unsigned long x, unsigned long y) { return (x > y) ? x : y; }
inline long long vnl_math_max(long long x, long long y) { return (x > y) ? x : y; }
inline unsigned long long vnl_math_max(unsigned long long x, unsigned long long y) { return (x > y) ? x : y; }
inline float vnl_math_max(float x, float y) { return (x < y) ? y : x; }
inline double vnl_math_max(double x, double y) { return (x < y) ? y : x; }
// min
inline int vnl_math_min(int x, int y) { return (x < y) ? x : y; }
inline unsigned int vnl_math_min(unsigned int x, unsigned int y) { return (x < y) ? x : y; }
inline long vnl_math_min(long x, long y) { return (x < y) ? x : y; }
inline unsigned long vnl_math_min(unsigned long x, unsigned long y) { return (x < y) ? x : y; }
inline long long vnl_math_min(long long x, long long y) { return (x < y) ? x : y; }
inline unsigned long long vnl_math_min(unsigned long long x, unsigned long long y) { return (x < y) ? x : y; }
inline float vnl_math_min(float x, float y) { return (x > y) ? y : x; }
inline double vnl_math_min(double x, double y) { return (x > y) ? y : x; }
// sqr (square)
inline bool vnl_math_sqr(bool x) { return x; }
inline int vnl_math_sqr(int x) { return x*x; }
inline unsigned int vnl_math_sqr(unsigned int x) { return x*x; }
inline long vnl_math_sqr(long x) { return x*x; }
inline unsigned long vnl_math_sqr(unsigned long x) { return x*x; }
inline long long vnl_math_sqr(long long x) { return x*x; }
inline unsigned long long vnl_math_sqr(unsigned long long x) { return x*x; }
inline float vnl_math_sqr(float x) { return x*x; }
inline double vnl_math_sqr(double x) { return x*x; }
// cube
inline bool vnl_math_cube(bool x) { return x; }
inline int vnl_math_cube(int x) { return x*x*x; }
inline unsigned int vnl_math_cube(unsigned int x) { return x*x*x; }
inline long vnl_math_cube(long x) { return x*x*x; }
inline unsigned long vnl_math_cube(unsigned long x) { return x*x*x; }
inline long long vnl_math_cube(long long x) { return x*x*x; }
inline unsigned long long vnl_math_cube(unsigned long long x) { return x*x*x; }
inline float vnl_math_cube(float x) { return x*x*x; }
inline double vnl_math_cube(double x) { return x*x*x; }
// sgn (sign in -1, 0, +1)
inline int vnl_math_sgn(int x) { return x?((x>0)?1:-1):0; }
inline int vnl_math_sgn(long x) { return x?((x>0)?1:-1):0; }
inline int vnl_math_sgn(long long x) { return x?((x>0)?1:-1):0; }
inline int vnl_math_sgn(float x) { return (x != 0)?((x>0)?1:-1):0; }
inline int vnl_math_sgn(double x) { return (x != 0)?((x>0)?1:-1):0; }
// sgn0 (sign in -1, +1 only, useful for reals)
inline int vnl_math_sgn0(int x) { return (x>=0)?1:-1; }
inline int vnl_math_sgn0(long x) { return (x>=0)?1:-1; }
inline int vnl_math_sgn0(long long x) { return (x>=0)?1:-1; }
inline int vnl_math_sgn0(float x) { return (x>=0)?1:-1; }
inline int vnl_math_sgn0(double x) { return (x>=0)?1:-1; }
// squared_magnitude
inline unsigned int vnl_math_squared_magnitude(char x) { return static_cast<unsigned int>(int(x)*int(x)); }
inline unsigned int vnl_math_squared_magnitude(unsigned char x) { return static_cast<unsigned int>(int(x)*int(x)); }
inline unsigned int vnl_math_squared_magnitude(int x) { return static_cast<unsigned int>(x*x); }
inline unsigned int vnl_math_squared_magnitude(unsigned int x) { return x*x; }
inline unsigned long vnl_math_squared_magnitude(long x) { return static_cast<unsigned long>(x*x); }
inline unsigned long vnl_math_squared_magnitude(unsigned long x) { return x*x; }
inline unsigned long long vnl_math_squared_magnitude(long long x) { return static_cast<unsigned long long>(x*x); }
inline unsigned long long vnl_math_squared_magnitude(unsigned long long x) { return x*x; }
inline float vnl_math_squared_magnitude(float x) { return x*x; }
inline double vnl_math_squared_magnitude(double x) { return x*x; }
inline long double vnl_math_squared_magnitude(long double x) { return x*x; }
// cuberoot
inline float vnl_math_cuberoot(float a) { return float((a<0) ? -vcl_exp(vcl_log(-a)/3) : vcl_exp(vcl_log(a)/3)); }
inline double vnl_math_cuberoot(double a) { return (a<0) ? -vcl_exp(vcl_log(-a)/3) : vcl_exp(vcl_log(a)/3); }
// hypotenuse
inline double vnl_math_hypot(int x, int y) { return vcl_sqrt(double(x*x + y*y)); }
inline float vnl_math_hypot(float x, float y) { return float( vcl_sqrt(double(x*x + y*y)) ); }
inline double vnl_math_hypot(double x, double y) { return vcl_sqrt(x*x + y*y); }
inline long double vnl_math_hypot(long double x, long double y) { return vcl_sqrt(x*x + y*y); }
#endif // vnl_math_h_
|