This file is indexed.

/usr/include/ITK-4.5/vnl/vnl_math.h is in libinsighttoolkit4-dev 4.5.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
// This is core/vnl/vnl_math.h
#ifndef vnl_math_h_
#define vnl_math_h_
#ifdef VCL_NEEDS_PRAGMA_INTERFACE
#pragma interface
#endif
//:
// \file
// \brief Namespace with standard math functions
//
//  The vnl_math namespace provides a standard set of the simple mathematical
//  functions (min, max, sqr, sgn, rnd, abs), and some predefined constants
//  such as pi and e, which are not defined by the ANSI C++ standard.
//
//  There are complex versions defined in vnl_complex.h
//
//  That's right, M_PI is nonstandard!
//
//  Aside from e, pi and their associates the class also defines eps,
//  the IEEE double machine precision.  This is the smallest number
//  eps such that 1+eps != 1.
//
//  The operations are overloaded for int, float and double arguments,
//  which in combination with inlining can make them  more efficient than
//  their counterparts in the standard C library.
//
// \author Andrew W. Fitzgibbon, Oxford RRG
// \date   July 13, 1996
//
// \verbatim
//  Modifications
//   21 May 1998 AWF Removed conditional VCL_IMPLEMENT_STATIC_CONSTS, sometimes gcc needs them.
//   LSB (Modifications) 23 Jan 2001 Documentation tidied
//   Peter Vanroose - 7 Sep 2002 - maxdouble etc. replaced by vnl_numeric_traits<T>::maxval
//   Amitha Perera - 13 Sep 2002 - make constant initialization standards compliant.
// \endverbatim

#include <vcl_cmath.h>
#include "dll.h"
#include <vxl_config.h>
#include <vnl/vnl_config.h> // for VNL_CONFIG_ENABLE_SSE2_ROUNDING
#ifdef VNL_CHECK_FPU_ROUNDING_MODE
# include <vcl_cassert.h>
#endif

// Figure out when the fast implementation can be used
#if VNL_CONFIG_ENABLE_SSE2_ROUNDING && (!defined(__GCCXML__)) && defined(__SSE2__)
# if !VXL_HAS_EMMINTRIN_H
#   error "Required file emmintrin.h for SSE2 not found"
# else
#   include <emmintrin.h> // sse 2 intrinsics
#   define USE_SSE2_IMPL 1
# endif
#else
# define USE_SSE2_IMPL 0
#endif
// Turn on fast impl when using GCC on Intel-based machines with the following exception:
//   PPC with Mac OS X
//   GCCXML
#if defined(__GNUC__) && (!defined(__GCCXML__)) &&  (defined(__i386__) || defined(__i386) || defined(__x86_64__) || defined(__x86_64)) && (!defined(__APPLE__)  || !defined(__ppc__) )
# define GCC_USE_FAST_IMPL 1
#else
# define GCC_USE_FAST_IMPL 0
#endif
// Turn on fast impl when using msvc on 32 bits windows
#if defined(VCL_VC) && (!defined(__GCCXML__)) && !defined(_WIN64)
# define VC_USE_FAST_IMPL 1
#else
# define VC_USE_FAST_IMPL 0
#endif


//: Type-accessible infinities for use in templates.
template <class T> T vnl_huge_val(T);
double   vnl_huge_val(double);
float    vnl_huge_val(float);
long int vnl_huge_val(long int);
int      vnl_huge_val(int);
short    vnl_huge_val(short);
char     vnl_huge_val(char);

//: real numerical constants
namespace vnl_math
{

  /* Strictly speaking, the static declaration of the constant
   * variables is redundant with the implicit behavior in C++
   * of objects declared const as defined at:
   *   "C++98 7.1.1/6: ...Objects declared const and
   *    not explicitly declared extern have internal
   *    linkage."
   *
   *  Explicit use of the static key word is used to make the
   *  code easier to understand.
   */
  //: pi, e and all that
 static const double e                = 2.7182818284590452354;
 static const double log2e            = 1.4426950408889634074;
 static const double log10e           = 0.43429448190325182765;
 static const double ln2              = 0.69314718055994530942;
 static const double ln10             = 2.30258509299404568402;
 static const double pi               = 3.14159265358979323846;
 static const double pi_over_2        = 1.57079632679489661923;
 static const double pi_over_4        = 0.78539816339744830962;
 static const double one_over_pi      = 0.31830988618379067154;
 static const double two_over_pi      = 0.63661977236758134308;
 static const double two_over_sqrtpi  = 1.12837916709551257390;
 static const double one_over_sqrt2pi = 0.39894228040143267794;
 static const double sqrt2            = 1.41421356237309504880;
 static const double sqrt1_2          = 0.70710678118654752440;
 static const double euler            = 0.57721566490153286061;

  //: IEEE double machine precision
 static const double eps             = 2.2204460492503131e-16;
 static const double sqrteps         = 1.490116119384766e-08;
  //: IEEE single machine precision
 static const float float_eps        = 1.192092896e-07f;
 static const float float_sqrteps    = 3.4526698307e-4f;
//: Convert an angle to [0, 2Pi) range
 double angle_0_to_2pi(double angle);
}

// We do not want to make assumptions about unknown types that happen
// to have conversions to one of the fundamental types.  The templated
// versions of isnan, isinf, and isfinite below serve as catch-alls to
// cause linker errors if these functions are invoked with an unknown
// type.  However, due to compiler bugs, the templates sometimes match
// too often (see documentation of VCL_TEMPLATE_MATCHES_TOO_OFTEN) and
// are selected over reference-binding overloads like those in
// vnl_rational.h.  We add the catch-all templates only if the
// compiler does not have this bug. -- Brad King

// Note that the three template functions below should not be declared "inline"
// since that would override the non-inline specialisations. - PVr.
//

// isnan
inline bool vnl_math_isnan(char)               { return false; }
inline bool vnl_math_isnan(short)              { return false; }
inline bool vnl_math_isnan(int)                { return false; }
inline bool vnl_math_isnan(long)               { return false; }
inline bool vnl_math_isnan(long long)          { return false; }
inline bool vnl_math_isnan(signed char)        { return false; }
inline bool vnl_math_isnan(unsigned char)      { return false; }
inline bool vnl_math_isnan(unsigned short)     { return false; }
inline bool vnl_math_isnan(unsigned int)       { return false; }
inline bool vnl_math_isnan(unsigned long)      { return false; }
inline bool vnl_math_isnan(unsigned long long) { return false; }
bool vnl_math_isnan(float);
bool vnl_math_isnan(double);
bool vnl_math_isnan(long double);
#if !VCL_TEMPLATE_MATCHES_TOO_OFTEN
template <class T> bool vnl_math_isnan(T);
#endif




// isinf
inline bool vnl_math_isinf(char)               { return false; }
inline bool vnl_math_isinf(short)              { return false; }
inline bool vnl_math_isinf(int)                { return false; }
inline bool vnl_math_isinf(long)               { return false; }
inline bool vnl_math_isinf(long long)          { return false; }
inline bool vnl_math_isinf(signed char)        { return false; }
inline bool vnl_math_isinf(unsigned char)      { return false; }
inline bool vnl_math_isinf(unsigned short)     { return false; }
inline bool vnl_math_isinf(unsigned int)       { return false; }
inline bool vnl_math_isinf(unsigned long)      { return false; }
inline bool vnl_math_isinf(unsigned long long) { return false; }
bool vnl_math_isinf(float);
bool vnl_math_isinf(double);
bool vnl_math_isinf(long double);
#if !VCL_TEMPLATE_MATCHES_TOO_OFTEN
template <class T> bool vnl_math_isinf(T);
#endif

// isfinite
inline bool vnl_math_isfinite(char)               { return true; }
inline bool vnl_math_isfinite(short)              { return true; }
inline bool vnl_math_isfinite(int)                { return true; }
inline bool vnl_math_isfinite(long)               { return true; }
inline bool vnl_math_isfinite(long long)          { return true; }
inline bool vnl_math_isfinite(signed char)        { return true; }
inline bool vnl_math_isfinite(unsigned char)      { return true; }
inline bool vnl_math_isfinite(unsigned short)     { return true; }
inline bool vnl_math_isfinite(unsigned int)       { return true; }
inline bool vnl_math_isfinite(unsigned long)      { return true; }
inline bool vnl_math_isfinite(unsigned long long) { return true; }
bool vnl_math_isfinite(float);
bool vnl_math_isfinite(double);
bool vnl_math_isfinite(long double);
#if !VCL_TEMPLATE_MATCHES_TOO_OFTEN
template <class T> bool vnl_math_isfinite(T);
#endif



// vnl_math_rnd_halfinttoeven  -- round towards nearest integer
//         halfway cases are rounded towards the nearest even integer, e.g.
//         vnl_math_rnd_halfinttoeven( 1.5) ==  2
//         vnl_math_rnd_halfinttoeven(-1.5) == -2
//         vnl_math_rnd_halfinttoeven( 2.5) ==  2
//         vnl_math_rnd_halfinttoeven( 3.5) ==  4
//
// We assume that the rounding mode is not changed from the default
// one (or at least that it is always restored to the default one).

#if USE_SSE2_IMPL // Fast sse2 implementation

inline int vnl_math_rnd_halfinttoeven(float  x)
{
# if defined(VNL_CHECK_FPU_ROUNDING_MODE) && defined(__GNUC__)
  assert(fegetround()==FE_TONEAREST);
# endif
  return _mm_cvtss_si32(_mm_set_ss(x));
}
inline int vnl_math_rnd_halfinttoeven(double  x)
{
# if defined(VNL_CHECK_FPU_ROUNDING_MODE) && defined(__GNUC__)
  assert(fegetround()==FE_TONEAREST);
# endif
  return _mm_cvtsd_si32(_mm_set_sd(x));
}

#elif GCC_USE_FAST_IMPL // Fast gcc asm implementation

inline int vnl_math_rnd_halfinttoeven(float  x)
{
# ifdef VNL_CHECK_FPU_ROUNDING_MODE
  assert(fegetround()==FE_TONEAREST);
# endif
  int r;
  __asm__ __volatile__ ("fistpl %0" : "=m"(r) : "t"(x) : "st");
  return r;
}
inline int vnl_math_rnd_halfinttoeven(double  x)
{
# ifdef VNL_CHECK_FPU_ROUNDING_MODE
  assert(fegetround()==FE_TONEAREST);
# endif
  int r;
  __asm__ __volatile__ ("fistpl %0" : "=m"(r) : "t"(x) : "st");
  return r;
}

#elif VC_USE_FAST_IMPL // Fast msvc asm implementation

inline int vnl_math_rnd_halfinttoeven(float  x)
{
  int r;
  __asm {
    fld x
    fistp r
  }
  return r;
}
inline int vnl_math_rnd_halfinttoeven(double  x)
{
  int r;
  __asm {
    fld x
    fistp r
  }
  return r;
}

#else // Vanilla implementation

inline int vnl_math_rnd_halfinttoeven(float  x)
{
  if (x>=0.f)
  {
     x+=0.5f;
     const int r = static_cast<int>(x);
     if ( x != static_cast<float>(r) ) return r;
     return 2*(r/2);
  }
  else
  {
     x-=0.5f;
     const int r = static_cast<int>(x);
     if ( x != static_cast<float>(r) ) return r;
     return 2*(r/2);
  }
}
inline int vnl_math_rnd_halfinttoeven(double x)
{
  if (x>=0.)
  {
     x+=0.5;
     const int r = static_cast<int>(x);
     if ( x != static_cast<double>(r) ) return r;
     return 2*(r/2);
  }
  else
  {
     x-=0.5;
     const int r = static_cast<int>(x);
     if ( x != static_cast<double>(r) ) return r;
     return 2*(r/2);
  }
}

#endif



// vnl_math_rnd_halfintup  -- round towards nearest integer
//         halfway cases are rounded upward, e.g.
//         vnl_math_rnd_halfintup( 1.5) ==  2
//         vnl_math_rnd_halfintup(-1.5) == -1
//         vnl_math_rnd_halfintup( 2.5) ==  3
//
// Be careful: argument absolute value must be less than INT_MAX/2
// for vnl_math_rnd_halfintup to be guaranteed to work.
// We also assume that the rounding mode is not changed from the default
// one (or at least that it is always restored to the default one).

#if USE_SSE2_IMPL || GCC_USE_FAST_IMPL || VC_USE_FAST_IMPL

inline int vnl_math_rnd_halfintup(float  x) { return vnl_math_rnd_halfinttoeven(2*x+0.5f)>>1; }
inline int vnl_math_rnd_halfintup(double  x) { return vnl_math_rnd_halfinttoeven(2*x+0.5)>>1; }

#else // Vanilla implementation

inline int vnl_math_rnd_halfintup(float  x)
{
  x+=0.5f;
  return static_cast<int>(x>=0.f?x:(x==static_cast<int>(x)?x:x-1.f));
}
inline int vnl_math_rnd_halfintup(double x)
{
  x+=0.5;
  return static_cast<int>(x>=0.?x:(x==static_cast<int>(x)?x:x-1.));
}

#endif



// vnl_math_rnd  -- round towards nearest integer
//         halfway cases such as 0.5 may be rounded either up or down
//         so as to maximize the efficiency, e.g.
//         vnl_math_rnd_halfinttoeven( 1.5) ==  1 or  2
//         vnl_math_rnd_halfinttoeven(-1.5) == -2 or -1
//         vnl_math_rnd_halfinttoeven( 2.5) ==  2 or  3
//         vnl_math_rnd_halfinttoeven( 3.5) ==  3 or  4
//
// We assume that the rounding mode is not changed from the default
// one (or at least that it is always restored to the default one).

#if  USE_SSE2_IMPL || GCC_USE_FAST_IMPL || VC_USE_FAST_IMPL

inline int vnl_math_rnd(float  x) { return vnl_math_rnd_halfinttoeven(x); }
inline int vnl_math_rnd(double  x) { return vnl_math_rnd_halfinttoeven(x); }

#else // Vanilla implementation

inline int vnl_math_rnd(float  x) { return x>=0.f?static_cast<int>(x+.5f):static_cast<int>(x-.5f); }
inline int vnl_math_rnd(double x) { return x>=0.0?static_cast<int>(x+0.5):static_cast<int>(x-0.5); }


#endif



// vnl_math_floor -- round towards minus infinity
//
// Be careful: argument absolute value must be less than INT_MAX/2
// for vnl_math_floor to be guaranteed to work.
// We also assume that the rounding mode is not changed from the default
// one (or at least that it is always restored to the default one).

#if  USE_SSE2_IMPL // Fast sse2 implementation

inline int vnl_math_floor(float  x)
{
# if defined(VNL_CHECK_FPU_ROUNDING_MODE) && defined(__GNUC__)
  assert(fegetround()==FE_TONEAREST);
# endif
   return _mm_cvtss_si32(_mm_set_ss(2*x-.5f))>>1;
}
inline int vnl_math_floor(double  x)
{
# if defined(VNL_CHECK_FPU_ROUNDING_MODE) && defined(__GNUC__)
  assert(fegetround()==FE_TONEAREST);
# endif
   return _mm_cvtsd_si32(_mm_set_sd(2*x-.5))>>1;
}

#elif GCC_USE_FAST_IMPL // Fast gcc asm implementation

inline int vnl_math_floor(float  x)
{
# ifdef VNL_CHECK_FPU_ROUNDING_MODE
  assert(fegetround()==FE_TONEAREST);
# endif
  int r;
  x = 2*x-.5f;
  __asm__ __volatile__ ("fistpl %0" : "=m"(r) : "t"(x) : "st");
  return r>>1;
}
inline int vnl_math_floor(double  x)
{
# ifdef VNL_CHECK_FPU_ROUNDING_MODE
  assert(fegetround()==FE_TONEAREST);
# endif
  int r;
  x = 2*x-.5;
  __asm__ __volatile__ ("fistpl %0" : "=m"(r) : "t"(x) : "st");
  return r>>1;
}

#elif VC_USE_FAST_IMPL // Fast msvc asm implementation

inline int vnl_math_floor(float  x)
{
  int r;
  x = 2*x-.5f;
  __asm {
    fld x
    fistp r
  }
  return r>>1;
}
inline int vnl_math_floor(double  x)
{
  int r;
  x = 2*x-.5;
  __asm {
    fld x
    fistp r
  }
  return r>>1;
}

#else // Vanilla implementation

inline int vnl_math_floor(float  x)
{
  return static_cast<int>(x>=0.f?x:(x==static_cast<int>(x)?x:x-1.f));
}
inline int vnl_math_floor(double x)
{
  return static_cast<int>(x>=0.0?x:(x==static_cast<int>(x)?x:x-1.0));
}

#endif



// vnl_math_ceil -- round towards plus infinity
//
// Be careful: argument absolute value must be less than INT_MAX/2
// for vnl_math_ceil to be guaranteed to work.
// We also assume that the rounding mode is not changed from the default
// one (or at least that it is always restored to the default one).

#if  USE_SSE2_IMPL // Fast sse2 implementation

inline int vnl_math_ceil(float  x)
{
# if defined(VNL_CHECK_FPU_ROUNDING_MODE) && defined(__GNUC__)
  assert(fegetround()==FE_TONEAREST);
# endif
   return -(_mm_cvtss_si32(_mm_set_ss(-.5f-2*x))>>1);
}
inline int vnl_math_ceil(double  x)
{
# if defined(VNL_CHECK_FPU_ROUNDING_MODE) && defined(__GNUC__)
  assert(fegetround()==FE_TONEAREST);
# endif
   return -(_mm_cvtsd_si32(_mm_set_sd(-.5-2*x))>>1);
}

#elif GCC_USE_FAST_IMPL // Fast gcc asm implementation

inline int vnl_math_ceil(float  x)
{
# ifdef VNL_CHECK_FPU_ROUNDING_MODE
  assert(fegetround()==FE_TONEAREST);
# endif
  int r;
  x = -.5f-2*x;
  __asm__ __volatile__ ("fistpl %0" : "=m"(r) : "t"(x) : "st");
  return -(r>>1);
}
inline int vnl_math_ceil(double  x)
{
# ifdef VNL_CHECK_FPU_ROUNDING_MODE
  assert(fegetround()==FE_TONEAREST);
# endif
  int r;
  x = -.5-2*x;
  __asm__ __volatile__ ("fistpl %0" : "=m"(r) : "t"(x) : "st");
  return -(r>>1);
}

#elif VC_USE_FAST_IMPL // Fast msvc asm implementation

inline int vnl_math_ceil(float  x)
{
  int r;
  x = -.5f-2*x;
  __asm {
    fld x
    fistp r
  }
  return -(r>>1);
}
inline int vnl_math_ceil(double  x)
{
  int r;
  x = -.5-2*x;
  __asm {
    fld x
    fistp r
  }
  return -(r>>1);
}

#else // Vanilla implementation

inline int vnl_math_ceil(float  x)
{
  return static_cast<int>(x<0.f?x:(x==static_cast<int>(x)?x:x+1.f));
}
inline int vnl_math_ceil(double x)
{
  return static_cast<int>(x<0.0?x:(x==static_cast<int>(x)?x:x+1.0));
}

#endif



// abs
inline bool               vnl_math_abs(bool x)               { return x; }
inline unsigned char      vnl_math_abs(unsigned char x)      { return x; }
inline unsigned char      vnl_math_abs(signed char x)        { return x < 0 ? static_cast<unsigned char>(-x) : static_cast<unsigned char>(x); }
inline unsigned char      vnl_math_abs(char x)               { return static_cast<unsigned char>(x); }
inline unsigned short     vnl_math_abs(short x)              { return x < 0 ? static_cast<unsigned short>(-x) : static_cast<unsigned short>(x); }
inline unsigned short     vnl_math_abs(unsigned short x)     { return x; }
inline unsigned int       vnl_math_abs(int x)                { return x < 0 ? static_cast<unsigned int>(-x) : static_cast<unsigned int>(x); }
inline unsigned int       vnl_math_abs(unsigned int x)       { return x; }
inline unsigned long      vnl_math_abs(long x)               { return x < 0L ? static_cast<unsigned long>(-x) : static_cast<unsigned long>(x); }
inline unsigned long      vnl_math_abs(unsigned long x)      { return x; }
inline unsigned long long vnl_math_abs(long long x)          { return x < 0LL ? static_cast<unsigned long long>(-x) : static_cast<unsigned long long>(x); }
inline unsigned long long vnl_math_abs(unsigned long long x) { return x; }
inline float              vnl_math_abs(float x)              { return x < 0.0f ? -x : x; }
inline double             vnl_math_abs(double x)             { return x < 0.0 ? -x : x; }
inline long double        vnl_math_abs(long double x)        { return x < 0.0 ? -x : x; }

// max
inline int                vnl_math_max(int x, int y)                               { return (x > y) ? x : y; }
inline unsigned int       vnl_math_max(unsigned int x, unsigned int y)             { return (x > y) ? x : y; }
inline long               vnl_math_max(long x, long y)                             { return (x > y) ? x : y; }
inline unsigned long      vnl_math_max(unsigned long x, unsigned long y)           { return (x > y) ? x : y; }
inline long long          vnl_math_max(long long x, long long y)                   { return (x > y) ? x : y; }
inline unsigned long long vnl_math_max(unsigned long long x, unsigned long long y) { return (x > y) ? x : y; }
inline float              vnl_math_max(float x, float y)                           { return (x < y) ? y : x; }
inline double             vnl_math_max(double x, double y)                         { return (x < y) ? y : x; }

// min
inline int                vnl_math_min(int x, int y)                               { return (x < y) ? x : y; }
inline unsigned int       vnl_math_min(unsigned int x, unsigned int y)             { return (x < y) ? x : y; }
inline long               vnl_math_min(long x, long y)                             { return (x < y) ? x : y; }
inline unsigned long      vnl_math_min(unsigned long x, unsigned long y)           { return (x < y) ? x : y; }
inline long long          vnl_math_min(long long x, long long y)                   { return (x < y) ? x : y; }
inline unsigned long long vnl_math_min(unsigned long long x, unsigned long long y) { return (x < y) ? x : y; }
inline float              vnl_math_min(float x, float y)                           { return (x > y) ? y : x; }
inline double             vnl_math_min(double x, double y)                         { return (x > y) ? y : x; }

// sqr (square)
inline bool               vnl_math_sqr(bool x)               { return x; }
inline int                vnl_math_sqr(int x)                { return x*x; }
inline unsigned int       vnl_math_sqr(unsigned int x)       { return x*x; }
inline long               vnl_math_sqr(long x)               { return x*x; }
inline unsigned long      vnl_math_sqr(unsigned long x)      { return x*x; }
inline long long          vnl_math_sqr(long long x)          { return x*x; }
inline unsigned long long vnl_math_sqr(unsigned long long x) { return x*x; }
inline float              vnl_math_sqr(float x)              { return x*x; }
inline double             vnl_math_sqr(double x)             { return x*x; }

// cube
inline bool               vnl_math_cube(bool x)               { return x; }
inline int                vnl_math_cube(int x)                { return x*x*x; }
inline unsigned int       vnl_math_cube(unsigned int x)       { return x*x*x; }
inline long               vnl_math_cube(long x)               { return x*x*x; }
inline unsigned long      vnl_math_cube(unsigned long x)      { return x*x*x; }
inline long long          vnl_math_cube(long long x)          { return x*x*x; }
inline unsigned long long vnl_math_cube(unsigned long long x) { return x*x*x; }
inline float              vnl_math_cube(float x)              { return x*x*x; }
inline double             vnl_math_cube(double x)             { return x*x*x; }

// sgn (sign in -1, 0, +1)
inline int vnl_math_sgn(int x)       { return x?((x>0)?1:-1):0; }
inline int vnl_math_sgn(long x)      { return x?((x>0)?1:-1):0; }
inline int vnl_math_sgn(long long x) { return x?((x>0)?1:-1):0; }
inline int vnl_math_sgn(float x)     { return (x != 0)?((x>0)?1:-1):0; }
inline int vnl_math_sgn(double x)    { return (x != 0)?((x>0)?1:-1):0; }

// sgn0 (sign in -1, +1 only, useful for reals)
inline int vnl_math_sgn0(int x)         { return (x>=0)?1:-1; }
inline int vnl_math_sgn0(long x)        { return (x>=0)?1:-1; }
inline int vnl_math_sgn0(long long x)   { return (x>=0)?1:-1; }
inline int vnl_math_sgn0(float x)       { return (x>=0)?1:-1; }
inline int vnl_math_sgn0(double x)      { return (x>=0)?1:-1; }

// squared_magnitude
inline unsigned int       vnl_math_squared_magnitude(char               x) { return static_cast<unsigned int>(int(x)*int(x)); }
inline unsigned int       vnl_math_squared_magnitude(unsigned char      x) { return static_cast<unsigned int>(int(x)*int(x)); }
inline unsigned int       vnl_math_squared_magnitude(int                x) { return static_cast<unsigned int>(x*x); }
inline unsigned int       vnl_math_squared_magnitude(unsigned int       x) { return x*x; }
inline unsigned long      vnl_math_squared_magnitude(long               x) { return static_cast<unsigned long>(x*x); }
inline unsigned long      vnl_math_squared_magnitude(unsigned long      x) { return x*x; }
inline unsigned long long vnl_math_squared_magnitude(long long          x) { return static_cast<unsigned long long>(x*x); }
inline unsigned long long vnl_math_squared_magnitude(unsigned long long x) { return x*x; }
inline float              vnl_math_squared_magnitude(float              x) { return x*x; }
inline double             vnl_math_squared_magnitude(double             x) { return x*x; }
inline long double        vnl_math_squared_magnitude(long double        x) { return x*x; }

// cuberoot
inline float  vnl_math_cuberoot(float  a) { return float((a<0) ? -vcl_exp(vcl_log(-a)/3) : vcl_exp(vcl_log(a)/3)); }
inline double vnl_math_cuberoot(double a) { return       (a<0) ? -vcl_exp(vcl_log(-a)/3) : vcl_exp(vcl_log(a)/3); }

// hypotenuse
inline double      vnl_math_hypot(int         x, int         y) { return vcl_sqrt(double(x*x + y*y)); }
inline float       vnl_math_hypot(float       x, float       y) { return float( vcl_sqrt(double(x*x + y*y)) ); }
inline double      vnl_math_hypot(double      x, double      y) { return vcl_sqrt(x*x + y*y); }
inline long double vnl_math_hypot(long double x, long double y) { return vcl_sqrt(x*x + y*y); }

#endif // vnl_math_h_