This file is indexed.

/usr/include/ITK-4.5/vnl/vnl_matrix.h is in libinsighttoolkit4-dev 4.5.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
// This is core/vnl/vnl_matrix.h
#ifndef vnl_matrix_h_
#define vnl_matrix_h_
#ifdef VCL_NEEDS_PRAGMA_INTERFACE
#pragma interface
#endif
#ifdef __INTEL_COMPILER
#pragma warning disable 444
#endif
//:
// \file
// \brief An ordinary mathematical matrix
// \verbatim
//  Modifications
//   Apr 21, 1989 - MBN - Initial design and implementation
//   Jun 22, 1989 - MBN - Removed non-destructive methods
//   Aug 09, 1989 - LGO - Inherit from Generic
//   Aug 20, 1989 - MBN - Changed template usage to reflect new syntax
//   Sep 11, 1989 - MBN - Added conditional exception handling and base class
//   Oct 05, 1989 - LGO - Don't re-allocate data in operator= when same size
//   Oct 19, 1989 - LGO - Add extra parameter to varargs constructor
//   Oct 19, 1989 - MBN - Added optional argument to set_compare method
//   Dec 08, 1989 - LGO - Allocate column data in one chunk
//   Dec 08, 1989 - LGO - Clean-up get and put, add const everywhere.
//   Dec 19, 1989 - LGO - Remove the map and reduce methods
//   Feb 22, 1990 - MBN - Changed size arguments from int to unsigned int
//   Jun 30, 1990 - MJF - Added base class name to constructor initializer
//   Feb 21, 1992 - VDN - New lite version
//   May 05, 1992 - VDN - Use envelope to avoid unnecessary copying
//   Sep 30, 1992 - VDN - Matrix inversion with singular value decomposition
//   Aug 21, 1996 - AWF - set_identity, normalize_rows, scale_row.
//   Sep 30, 1996 - AWF - set_row/column methods. Const-correct data_block().
//   14 Feb 1997  - AWF - get_n_rows, get_n_columns.
//   20 Mar 1997  - PVR - get_row, get_column.
//   24-Oct-2010 - Peter Vanroose - mutators and filling methods now return *this
//   18-Jan-2011 - Peter Vanroose - added methods set_diagonal() & get_diagonal()
// \endverbatim

#include <vcl_iosfwd.h>
#include <vnl/vnl_tag.h>
#include <vnl/vnl_c_vector.h>
#include <vnl/vnl_config.h>
#ifndef NDEBUG
# if VNL_CONFIG_CHECK_BOUNDS
#  include <vnl/vnl_error.h>
#  include <vcl_cassert.h>
# endif
#else
# undef VNL_CONFIG_CHECK_BOUNDS
# define VNL_CONFIG_CHECK_BOUNDS 0
# undef ERROR_CHECKING
#endif

template <class T> class vnl_vector;
template <class T> class vnl_matrix;

//--------------------------------------------------------------------------------

#ifndef DOXYGEN_SHOULD_SKIP_THIS
#define v vnl_vector<T>
#define m vnl_matrix<T>
#endif // DOXYGEN_SHOULD_SKIP_THIS
template <class T> m operator+(T const&, m const&);
template <class T> m operator-(T const&, m const&);
template <class T> m operator*(T const&, m const&);
template <class T> m element_product(m const&, m const&);
template <class T> m element_quotient(m const&, m const&);
template <class T> T dot_product(m const&, m const&);
template <class T> T inner_product(m const&, m const&);
template <class T> T cos_angle(m const&, m const& );
template <class T> vcl_ostream& operator<<(vcl_ostream&, m const&);
template <class T> vcl_istream& operator>>(vcl_istream&, m&);
#undef v
#undef m

//--------------------------------------------------------------------------------

enum vnl_matrix_type
{
  vnl_matrix_null,
  vnl_matrix_identity
};

//:  An ordinary mathematical matrix
// The vnl_matrix<T> class implements two-dimensional arithmetic
// matrices  for  a user-specified numeric data type. Using the
// parameterized types facility of C++,  it  is  possible,  for
// example, for the user to create a matrix of rational numbers
// by parameterizing the vnl_matrix class over the Rational  class.
// The  only  requirement  for the type is that it supports the
// basic arithmetic operators.
//
// Note: Unlike   the   other   sequence   classes,   the
// vnl_matrix<T>  class is fixed-size. It will not grow once the
// size has been specified to the constructor or changed by the
// assignment  or  multiplication  operators.  The vnl_matrix<T>
// class is row-based with addresses of rows being cached,  and
// elements accessed as m[row][col].
//
// Note: The matrix can, however, be resized using the set_size(nr,nc) function.
//
// Note: Indexing of the matrix is zero-based, so the top-left element is M(0,0).
//
// Note: Inversion of matrix M, and other operations such as solving systems of linear
// equations are handled by the matrix decomposition classes in vnl/algo, such
// as matrix_inverse, svd, qr etc.
//
// Note: Use a vnl_vector<T> with these matrices.

template<class T>
class vnl_matrix
{
 public:
  //: Default constructor creates an empty matrix of size 0,0.
  vnl_matrix() :
    num_rows(0),
    num_cols(0),
    data(0)
  {
  }

  //: Construct a matrix of size r rows by c columns
  // Contents are unspecified.
  // Complexity $O(1)$
  vnl_matrix(unsigned r, unsigned c);                           // r rows, c cols.

  //: Construct a matrix of size r rows by c columns, and all elements equal to v0
  // Complexity $O(r.c)$
  vnl_matrix(unsigned r, unsigned c, T const& v0);              // r rows, c cols, value v0.

  //: Construct a matrix of size r rows by c columns, with a special type
  // Contents are specified by t
  // Complexity $O(r.c)$
  vnl_matrix(unsigned r, unsigned c, vnl_matrix_type t);        // r rows, c cols, special type

  //: Construct a matrix of size r rows by c columns, initialised by an automatic array
  // The first n elements, are initialised row-wise, to values.
  // Complexity $O(n)$
  vnl_matrix(unsigned r, unsigned c, unsigned n, T const values[]);  // use automatic arrays.

  //: Construct a matrix of size r rows by c columns, initialised by a memory block
  // The values are initialise row wise from the data.
  // Complexity $O(r.c)$
  vnl_matrix(T const* data_block, unsigned r, unsigned c);      // fill row-wise.

  //: Copy construct a matrix
  // Complexity $O(r.c)$
  vnl_matrix(vnl_matrix<T> const&);                             // from another matrix.

#ifndef VXL_DOXYGEN_SHOULD_SKIP_THIS
// <internal>
  // These constructors are here so that operator* etc can take
  // advantage of the C++ return value optimization.
  vnl_matrix(vnl_matrix<T> const &, vnl_matrix<T> const &, vnl_tag_add); // M + M
  vnl_matrix(vnl_matrix<T> const &, vnl_matrix<T> const &, vnl_tag_sub); // M - M
  vnl_matrix(vnl_matrix<T> const &, T,                     vnl_tag_mul); // M * s
  vnl_matrix(vnl_matrix<T> const &, T,                     vnl_tag_div); // M / s
  vnl_matrix(vnl_matrix<T> const &, T,                     vnl_tag_add); // M + s
  vnl_matrix(vnl_matrix<T> const &, T,                     vnl_tag_sub); // M - s
  vnl_matrix(vnl_matrix<T> const &, vnl_matrix<T> const &, vnl_tag_mul); // M * M
  vnl_matrix(vnl_matrix<T> &that, vnl_tag_grab)
    : num_rows(that.num_rows), num_cols(that.num_cols), data(that.data)
  { that.num_cols=that.num_rows=0; that.data=0; } // "*this" now uses "that"'s data.
// </internal>
#endif

  //: Matrix destructor
  ~vnl_matrix();

// Basic 2D-Array functionality-------------------------------------------

  //: Return number of rows
  unsigned rows()    const { return num_rows; }

  //: Return number of columns
  // A synonym for cols()
  unsigned columns()  const { return num_cols; }

  //: Return number of columns
  // A synonym for columns()
  unsigned cols()    const { return num_cols; }

  //: Return number of elements
  // This equals rows() * cols()
  unsigned size()    const { return rows()*cols(); }

  //: set element with boundary checks if error checking is on.
  void put(unsigned r, unsigned c, T const&);

  //: get element with boundary checks if error checking is on.
  T    get(unsigned r, unsigned c) const;

  //: return pointer to given row
  // No boundary checking here.
  T       * operator[](unsigned r) { return data[r]; }

  //: return pointer to given row
  // No boundary checking here.
  T const * operator[](unsigned r) const { return data[r]; }

  //: Access an element for reading or writing
  // There are assert style boundary checks - #define NDEBUG to turn them off.
  T       & operator()(unsigned r, unsigned c)
  {
#if VNL_CONFIG_CHECK_BOUNDS
    assert(r<rows());   // Check the row index is valid
    assert(c<cols());   // Check the column index is valid
#endif
    return this->data[r][c];
  }

  //: Access an element for reading
  // There are assert style boundary checks - #define NDEBUG to turn them off.
  T const & operator()(unsigned r, unsigned c) const
  {
#if VNL_CONFIG_CHECK_BOUNDS
    assert(r<rows());   // Check the row index is valid
    assert(c<cols());   // Check the column index is valid
#endif
    return this->data[r][c];
  }


  // ----------------------- Filling and copying -----------------------

  //: Sets all elements of matrix to specified value, and returns "*this".
  //  Complexity $O(r.c)$
  //  Returning "*this" allows "chaining" two or more operations:
  //  e.g., to set a matrix to a column-normalized all-elements-equal matrix, say
  //  \code
  //     M.fill(1).normalize_columns();
  //  \endcode
  //  Returning "*this" also allows passing such a matrix as argument
  //  to a function f, without having to name the constructed matrix:
  //  \code
  //     f(vnl_matrix<double>(5,5,1.0).normalize_columns());
  //  \endcode
  vnl_matrix& fill(T const&);

  //: Sets all diagonal elements of matrix to specified value; returns "*this".
  //  Complexity $O(\min(r,c))$
  //  Returning "*this" allows "chaining" two or more operations:
  //  e.g., to set a 3x3 matrix to [5 0 0][0 10 0][0 0 15], just say
  //  \code
  //     M.fill_diagonal(5).scale_row(1,2).scale_column(2,3);
  //  \endcode
  //  Returning "*this" also allows passing a diagonal-filled matrix as argument
  //  to a function f, without having to name the constructed matrix:
  //  \code
  //     f(vnl_matrix<double>(3,3).fill_diagonal(5));
  //  \endcode
  vnl_matrix& fill_diagonal(T const&);

  //: Sets the diagonal elements of this matrix to the specified list of values.
  //  Returning "*this" allows "chaining" two or more operations: see the
  //  reasoning (and the examples) in the documentation for method
  //  fill_diagonal().
  vnl_matrix& set_diagonal(vnl_vector<T> const&);

  //: Fills (laminates) this matrix with the given data, then returns it.
  //  We assume that the argument points to a contiguous rows*cols array, stored rowwise.
  //  No bounds checking on the array.
  //  Returning "*this" allows "chaining" two or more operations:
  //  e.g., to fill a square matrix column-wise, fill it rowwise then transpose:
  //  \code
  //     M.copy_in(array).inplace_transpose();
  //  \endcode
  //  Returning "*this" also allows passing a filled-in matrix as argument
  //  to a function f, without having to name the constructed matrix:
  //  \code
  //     f(vnl_matrix<double>(3,3).copy_in(array));
  //  \endcode
  vnl_matrix& copy_in(T const *);

  //: Fills (laminates) this matrix with the given data, then returns it.
  // A synonym for copy_in()
  vnl_matrix& set(T const *d) { return copy_in(d); }

  //: Fills the given array with this matrix.
  //  We assume that the argument points to a contiguous rows*cols array, stored rowwise.
  // No bounds checking on the array.
  void copy_out(T *) const;

  //: Set all elements to value v
  // Complexity $O(r.c)$
  vnl_matrix<T>& operator=(T const&v) { fill(v); return *this; }

  //: Copies all elements of rhs matrix into lhs matrix.
  // Complexity $O(\min(r,c))$
  vnl_matrix<T>& operator=(vnl_matrix<T> const&);

  // ----------------------- Arithmetic --------------------------------
  // note that these functions should not pass scalar as a const&.
  // Look what would happen to A /= A(0,0).

  //: Add rhs to each element of lhs matrix in situ
  vnl_matrix<T>& operator+=(T value);

  //: Subtract rhs from each element of lhs matrix in situ
  vnl_matrix<T>& operator-=(T value);

  //: Scalar multiplication in situ of lhs matrix  by rhs
  vnl_matrix<T>& operator*=(T value);

  //: Scalar division of lhs matrix  in situ by rhs
  vnl_matrix<T>& operator/=(T value);

  //: Add rhs to lhs  matrix in situ
  vnl_matrix<T>& operator+=(vnl_matrix<T> const&);
  //: Subtract rhs from lhs matrix in situ
  vnl_matrix<T>& operator-=(vnl_matrix<T> const&);
  //: Multiply lhs matrix in situ by rhs
  vnl_matrix<T>& operator*=(vnl_matrix<T> const&rhs) { return *this = (*this) * rhs; }

  //: Negate all elements of matrix
  vnl_matrix<T> operator-() const;


  //: Add rhs to each element of lhs matrix and return result in new matrix
  vnl_matrix<T> operator+(T const& v) const { return vnl_matrix<T>(*this, v, vnl_tag_add()); }

  //: Subtract rhs from each element of lhs matrix and return result in new matrix
  vnl_matrix<T> operator-(T const& v) const { return vnl_matrix<T>(*this, v, vnl_tag_sub()); }

  //: Scalar multiplication of lhs matrix by rhs  and return result in new matrix
  vnl_matrix<T> operator*(T const& v) const { return vnl_matrix<T>(*this, v, vnl_tag_mul()); }

  //: Scalar division of lhs matrix by rhs and return result in new matrix
  vnl_matrix<T> operator/(T const& v) const { return vnl_matrix<T>(*this, v, vnl_tag_div()); }

  //: Matrix add rhs to lhs matrix and return result in new matrix
  vnl_matrix<T> operator+(vnl_matrix<T> const& rhs) const { return vnl_matrix<T>(*this, rhs, vnl_tag_add()); }
  //: Matrix subtract rhs from lhs and return result in new matrix
  vnl_matrix<T> operator-(vnl_matrix<T> const& rhs) const { return vnl_matrix<T>(*this, rhs, vnl_tag_sub()); }
  //: Matrix multiply lhs by rhs matrix and return result in new matrix
  vnl_matrix<T> operator*(vnl_matrix<T> const& rhs) const { return vnl_matrix<T>(*this, rhs, vnl_tag_mul()); }

  ////--------------------------- Additions ----------------------------

  //: Make a new matrix by applying function to each element.
  vnl_matrix<T> apply(T (*f)(T)) const;

  //: Make a new matrix by applying function to each element.
  vnl_matrix<T> apply(T (*f)(T const&)) const;

  //: Return transpose
  vnl_matrix<T> transpose() const;

  //: Return conjugate transpose
  vnl_matrix<T> conjugate_transpose() const;

  //: Set values of this matrix to those of M, starting at [top,left]
  vnl_matrix<T>& update(vnl_matrix<T> const&, unsigned top=0, unsigned left=0);

  //: Set the elements of the i'th column to v[i]  (No bounds checking)
  vnl_matrix& set_column(unsigned i, T const * v);

  //: Set the elements of the i'th column to value, then return *this.
  vnl_matrix& set_column(unsigned i, T value );

  //: Set j-th column to v, then return *this.
  vnl_matrix& set_column(unsigned j, vnl_vector<T> const& v);

  //: Set columns to those in M, starting at starting_column, then return *this.
  vnl_matrix& set_columns(unsigned starting_column, vnl_matrix<T> const& M);

  //: Set the elements of the i'th row to v[i]  (No bounds checking)
  vnl_matrix& set_row(unsigned i, T const * v);

  //: Set the elements of the i'th row to value, then return *this.
  vnl_matrix& set_row(unsigned i, T value );

  //: Set the i-th row
  vnl_matrix& set_row(unsigned i, vnl_vector<T> const&);

  //: Extract a sub-matrix of size r x c, starting at (top,left)
  //  Thus it contains elements  [top,top+r-1][left,left+c-1]
  vnl_matrix<T> extract(unsigned r, unsigned c,
                        unsigned top=0, unsigned left=0) const;

  //: Extract a sub-matrix starting at (top,left)
  //
  //  The output is stored in \a sub_matrix, and it should have the
  //  required size on entry.  Thus the result will contain elements
  //  [top,top+sub_matrix.rows()-1][left,left+sub_matrix.cols()-1]
  void extract ( vnl_matrix<T>& sub_matrix,
                 unsigned top=0, unsigned left=0) const;


  //: Get a vector equal to the given row
  vnl_vector<T> get_row(unsigned r) const;

  //: Get a vector equal to the given column
  vnl_vector<T> get_column(unsigned c) const;

  //: Get n rows beginning at rowstart
  vnl_matrix<T> get_n_rows(unsigned rowstart, unsigned n) const;

  //: Get n columns beginning at colstart
  vnl_matrix<T> get_n_columns(unsigned colstart, unsigned n) const;

  //: Return a vector with the content of the (main) diagonal
  vnl_vector<T> get_diagonal() const;

  // ==== mutators ====

  //: Sets this matrix to an identity matrix, then returns "*this".
  //  Returning "*this" allows e.g. passing an identity matrix as argument to
  //  a function f, without having to name the constructed matrix:
  //  \code
  //     f(vnl_matrix<double>(5,5).set_identity());
  //  \endcode
  //  Returning "*this" also allows "chaining" two or more operations:
  //  e.g., to set a 3x3 matrix to [3 0 0][0 2 0][0 0 1], one could say
  //  \code
  //     M.set_identity().scale_row(0,3).scale_column(1,2);
  //  \endcode
  //  If the matrix is not square, anyhow set main diagonal to 1, the rest to 0.
  vnl_matrix& set_identity();

  //: Transposes this matrix efficiently, and returns it.
  //  Returning "*this" allows "chaining" two or more operations:
  //  e.g., to fill a square matrix column-wise, fill it rowwise then transpose:
  //  \code
  //     M.copy_in(array).inplace_transpose();
  //  \endcode
  vnl_matrix& inplace_transpose();

  //: Reverses the order of rows, and returns "*this".
  //  Returning "*this" allows "chaining" two or more operations:
  //  e.g., to flip both up-down and left-right, one could just say
  //  \code
  //     M.flipud().fliplr();
  //  \endcode
  vnl_matrix& flipud();

  //: Reverses the order of columns, and returns "*this".
  //  Returning "*this" allows "chaining" two or more operations:
  //  e.g., to flip both up-down and left-right, one could just say
  //  \code
  //     M.flipud().fliplr();
  //  \endcode
  vnl_matrix& fliplr();

  //: Normalizes each row so it is a unit vector, and returns "*this".
  //  Zero rows are not modified
  //  Returning "*this" allows "chaining" two or more operations:
  //  e.g., to set a matrix to a row-normalized all-elements-equal matrix, say
  //  \code
  //     M.fill(1).normalize_rows();
  //  \endcode
  //  Returning "*this" also allows passing such a matrix as argument
  //  to a function f, without having to name the constructed matrix:
  //  \code
  //     f(vnl_matrix<double>(5,5,1.0).normalize_rows());
  //  \endcode
  vnl_matrix& normalize_rows();

  //: Normalizes each column so it is a unit vector, and returns "*this".
  //  Zero columns are not modified
  //  Returning "*this" allows "chaining" two or more operations:
  //  e.g., to set a matrix to a column-normalized all-elements-equal matrix, say
  //  \code
  //     M.fill(1).normalize_columns();
  //  \endcode
  //  Returning "*this" also allows passing such a matrix as argument
  //  to a function f, without having to name the constructed matrix:
  //  \code
  //     f(vnl_matrix<double>(5,5,1.0).normalize_columns());
  //  \endcode
  vnl_matrix& normalize_columns();

  //: Scales elements in given row by a factor T, and returns "*this".
  //  Returning "*this" allows "chaining" two or more operations:
  //  e.g., to set a 3x3 matrix to [3 0 0][0 2 0][0 0 1], one could say
  //  \code
  //     M.set_identity().scale_row(0,3).scale_column(1,2);
  //  \endcode
  vnl_matrix& scale_row(unsigned row, T value);

  //: Scales elements in given column by a factor T, and returns "*this".
  //  Returning "*this" allows "chaining" two or more operations:
  //  e.g., to set a 3x3 matrix to [3 0 0][0 2 0][0 0 1], one could say
  //  \code
  //     M.set_identity().scale_row(0,3).scale_column(1,2);
  //  \endcode
  vnl_matrix& scale_column(unsigned col, T value);

  //: Swap this matrix with that matrix
  void swap(vnl_matrix<T> & that);

  //: Type def for norms.
  typedef typename vnl_c_vector<T>::abs_t abs_t;

  //: Return sum of absolute values of elements
  abs_t array_one_norm() const { return vnl_c_vector<T>::one_norm(begin(), size()); }

  //: Return square root of sum of squared absolute element values
  abs_t array_two_norm() const { return vnl_c_vector<T>::two_norm(begin(), size()); }

  //: Return largest absolute element value
  abs_t array_inf_norm() const { return vnl_c_vector<T>::inf_norm(begin(), size()); }

  //: Return sum of absolute values of elements
  abs_t absolute_value_sum() const { return array_one_norm(); }

  //: Return largest absolute value
  abs_t absolute_value_max() const { return array_inf_norm(); }

  // $ || M ||_1 := \max_j \sum_i | M_{ij} | $
  abs_t operator_one_norm() const;

  // $ || M ||_\inf := \max_i \sum_j | M_{ij} | $
  abs_t operator_inf_norm() const;

  //: Return Frobenius norm of matrix (sqrt of sum of squares of its elements)
  abs_t frobenius_norm() const { return vnl_c_vector<T>::two_norm(begin(), size()); }

  //: Return Frobenius norm of matrix (sqrt of sum of squares of its elements)
  abs_t fro_norm() const { return frobenius_norm(); }

  //: Return RMS of all elements
  abs_t rms() const { return vnl_c_vector<T>::rms_norm(begin(), size()); }

  //: Return minimum value of elements
  T min_value() const { return vnl_c_vector<T>::min_value(begin(), size()); }

  //: Return maximum value of elements
  T max_value() const { return vnl_c_vector<T>::max_value(begin(), size()); }

  //: Return location of minimum value of elements
  unsigned arg_min() const { return vnl_c_vector<T>::arg_min(begin(), size()); }

  //: Return location of maximum value of elements
  unsigned arg_max() const { return vnl_c_vector<T>::arg_max(begin(), size()); }

  //: Return mean of all matrix elements
  T mean() const { return vnl_c_vector<T>::mean(begin(), size()); }

  // predicates

  //: Return true iff the size is zero.
  bool empty() const { return !data || !num_rows || !num_cols; }

  //:  Return true if all elements equal to identity.
  bool is_identity() const;

  //:  Return true if all elements equal to identity, within given tolerance
  bool is_identity(double tol) const;

  //: Return true if all elements equal to zero.
  bool is_zero() const;

  //: Return true if all elements equal to zero, within given tolerance
  bool is_zero(double tol) const;

  //:  Return true if all elements of both matrices are equal, within given tolerance
  bool is_equal(vnl_matrix<T> const& rhs, double tol) const;

  //: Return true if finite
  bool is_finite() const;

  //: Return true if matrix contains NaNs
  bool has_nans() const;

  //: abort if size is not as expected
  // This function does or tests nothing if NDEBUG is defined
#ifdef NDEBUG
  void assert_size(unsigned, unsigned ) const
  {
#else
  void assert_size(unsigned r, unsigned c) const
  {
    assert_size_internal(r, c);
#endif
  }
  //: abort if matrix contains any INFs or NANs.
  // This function does or tests nothing if NDEBUG is defined
  void assert_finite() const
  {
#ifndef NDEBUG
    assert_finite_internal();
#endif
  }

  ////----------------------- Input/Output ----------------------------

  //: Read a vnl_matrix from an ascii vcl_istream, automatically determining file size if the input matrix has zero size.
  static vnl_matrix<T> read(vcl_istream& s);

  // : Read a vnl_matrix from an ascii vcl_istream, automatically determining file size if the input matrix has zero size.
  bool read_ascii(vcl_istream& s);

  //--------------------------------------------------------------------------------

  //: Access the contiguous block storing the elements in the matrix row-wise. O(1).
  // 1d array, row-major order.
  T const* data_block() const { return data[0]; }

  //: Access the contiguous block storing the elements in the matrix row-wise. O(1).
  // 1d array, row-major order.
  T      * data_block() { return data[0]; }

  //: Access the 2D array, so that elements can be accessed with array[row][col] directly.
  //  2d array, [row][column].
  T const* const* data_array() const { return data; }

  //: Access the 2D array, so that elements can be accessed with array[row][col] directly.
  //  2d array, [row][column].
  T      *      * data_array() { return data; }

  typedef T element_type;

  //: Iterators
  typedef T       *iterator;
  //: Iterator pointing to start of data
  iterator       begin() { return data?data[0]:0; }
  //: Iterator pointing to element beyond end of data
  iterator       end() { return data?data[0]+num_rows*num_cols:0; }

  //: Const iterators
  typedef T const *const_iterator;
  //: Iterator pointing to start of data
  const_iterator begin() const { return data?data[0]:0; }
  //: Iterator pointing to element beyond end of data
  const_iterator end() const { return data?data[0]+num_rows*num_cols:0; }

  //: Return a reference to this.
  // Useful in code which would prefer not to know if its argument
  // is a matrix, matrix_ref or a matrix_fixed.  Note that it doesn't
  // return a matrix_ref, so it's only useful in templates or macros.
  vnl_matrix<T> const& as_ref() const { return *this; }

  //: Return a reference to this.
  vnl_matrix<T>&       as_ref()       { return *this; }

  //--------------------------------------------------------------------------------

  //: Return true if *this == rhs
  bool operator_eq(vnl_matrix<T> const & rhs) const;

  //: Equality operator
  bool operator==(vnl_matrix<T> const &that) const { return  this->operator_eq(that); }

  //: Inequality operator
  bool operator!=(vnl_matrix<T> const &that) const { return !this->operator_eq(that); }

  //: Print matrix to os in some hopefully sensible format
  void print(vcl_ostream& os) const;

  //: Make the matrix as if it had been default-constructed.
  void clear();

  //: Resize to r rows by c columns. Old data lost.
  // Returns true if size changed.
  bool set_size(unsigned r, unsigned c);

//--------------------------------------------------------------------------------

 protected:
  unsigned num_rows;   // Number of rows
  unsigned num_cols;   // Number of columns
  T** data;            // Pointer to the vnl_matrix

#if VCL_HAS_SLICED_DESTRUCTOR_BUG
  // Since this bug exists, we need a flag that can be set during
  // construction to tell our destructor whether we own data.
  char vnl_matrix_own_data;
#endif

  void assert_size_internal(unsigned r, unsigned c) const;
  void assert_finite_internal() const;

  //: Delete data
  void destroy();

#if VCL_NEED_FRIEND_FOR_TEMPLATE_OVERLOAD
# define v vnl_vector<T>
# define m vnl_matrix<T>
  friend m operator+         VCL_NULL_TMPL_ARGS (T const&, m const&);
  friend m operator-         VCL_NULL_TMPL_ARGS (T const&, m const&);
  friend m operator*         VCL_NULL_TMPL_ARGS (T const&, m const&);
  friend m element_product   VCL_NULL_TMPL_ARGS (m const&, m const&);
  friend m element_quotient  VCL_NULL_TMPL_ARGS (m const&, m const&);
  friend T dot_product       VCL_NULL_TMPL_ARGS (m const&, m const&);
  friend T inner_product     VCL_NULL_TMPL_ARGS (m const&, m const&);
  friend T cos_angle         VCL_NULL_TMPL_ARGS (m const&, m const&);
  friend vcl_ostream& operator<< VCL_NULL_TMPL_ARGS (vcl_ostream&, m const&);
  friend vcl_istream& operator>> VCL_NULL_TMPL_ARGS (vcl_istream&, m&);
# undef v
# undef m
#endif

  // inline function template instantiation hack for gcc 2.97 -- fsm
  static void inline_function_tickler();
};


// Definitions of inline functions.


//: Returns the value of the element at specified row and column. O(1).
// Checks for valid range of indices.

template<class T>
inline T vnl_matrix<T>::get(unsigned row, unsigned column) const
{
#ifdef ERROR_CHECKING
  if (row >= this->num_rows)                   // If invalid size specified
    vnl_error_matrix_row_index("get", row);    // Raise exception
  if (column >= this->num_cols)                // If invalid size specified
    vnl_error_matrix_col_index("get", column); // Raise exception
#endif
  return this->data[row][column];
}

//: Puts value into element at specified row and column. O(1).
// Checks for valid range of indices.

template<class T>
inline void vnl_matrix<T>::put(unsigned row, unsigned column, T const& value)
{
#ifdef ERROR_CHECKING
  if (row >= this->num_rows)                   // If invalid size specified
    vnl_error_matrix_row_index("put", row);    // Raise exception
  if (column >= this->num_cols)                // If invalid size specified
    vnl_error_matrix_col_index("put", column); // Raise exception
#endif
  this->data[row][column] = value;             // Assign data value
}


// non-member arithmetical operators.

//:
// \relatesalso vnl_matrix
template<class T>
inline vnl_matrix<T> operator*(T const& value, vnl_matrix<T> const& m)
{
  return vnl_matrix<T>(m, value, vnl_tag_mul());
}

//:
// \relatesalso vnl_matrix
template<class T>
inline vnl_matrix<T> operator+(T const& value, vnl_matrix<T> const& m)
{
  return vnl_matrix<T>(m, value, vnl_tag_add());
}

//: Swap two matrices
// \relatesalso vnl_matrix
template<class T>
inline void swap(vnl_matrix<T> &A, vnl_matrix<T> &B) { A.swap(B); }


#endif // vnl_matrix_h_