/usr/include/ITK-4.5/vnl/vnl_matrix.txx is in libinsighttoolkit4-dev 4.5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 | // This is core/vnl/vnl_matrix.txx
#ifndef vnl_matrix_txx_
#define vnl_matrix_txx_
//:
// \file
//
// Copyright (C) 1991 Texas Instruments Incorporated.
// Copyright (C) 1992 General Electric Company.
//
// Permission is granted to any individual or institution to use, copy, modify,
// and distribute this software, provided that this complete copyright and
// permission notice is maintained, intact, in all copies and supporting
// documentation.
//
// Texas Instruments Incorporated, General Electric Company,
// provides this software "as is" without express or implied warranty.
//
// Created: MBN Apr 21, 1989 Initial design and implementation
// Updated: MBN Jun 22, 1989 Removed non-destructive methods
// Updated: LGO Aug 09, 1989 Inherit from Generic
// Updated: MBN Aug 20, 1989 Changed template usage to reflect new syntax
// Updated: MBN Sep 11, 1989 Added conditional exception handling and base class
// Updated: LGO Oct 05, 1989 Don't re-allocate data in operator= when same size
// Updated: LGO Oct 19, 1989 Add extra parameter to varargs constructor
// Updated: MBN Oct 19, 1989 Added optional argument to set_compare method
// Updated: LGO Dec 08, 1989 Allocate column data in one chunk
// Updated: LGO Dec 08, 1989 Clean-up get and put, add const everywhere.
// Updated: LGO Dec 19, 1989 Remove the map and reduce methods
// Updated: MBN Feb 22, 1990 Changed size arguments from int to unsigned int
// Updated: MJF Jun 30, 1990 Added base class name to constructor initializer
// Updated: VDN Feb 21, 1992 New lite version
// Updated: VDN May 05, 1992 Use envelope to avoid unnecessary copying
// Updated: VDN Sep 30, 1992 Matrix inversion with singular value decomposition
// Updated: AWF Aug 21, 1996 set_identity, normalize_rows, scale_row.
// Updated: AWF Sep 30, 1996 set_row/column methods. Const-correct data_block().
// Updated: AWF 14 Feb 1997 get_n_rows, get_n_columns.
// Updated: PVR 20 Mar 1997 get_row, get_column.
//
// The parameterized vnl_matrix<T> class implements two dimensional arithmetic
// matrices of a user specified type. The only constraint placed on the type is
// that it must overload the following operators: +, -, *, and /. Thus, it
// will be possible to have a vnl_matrix over vcl_complex<T>. The vnl_matrix<T>
// class is static in size, that is once a vnl_matrix<T> of a particular size
// has been created, there is no dynamic growth method available. You can
// resize the matrix, with the loss of any existing data using set_size().
//
// Each matrix contains a protected data section that has a T** slot that
// points to the physical memory allocated for the two dimensional array. In
// addition, two integers specify the number of rows and columns for the
// matrix. These values are provided in the constructors. A single protected
// slot contains a pointer to a compare function to be used in equality
// operations. The default function used is the built-in == operator.
//
// Four different constructors are provided. The first constructor takes two
// integer arguments specifying the row and column size. Enough memory is
// allocated to hold row*column elements of type Type. The second constructor
// takes the same two first arguments, but also accepts an additional third
// argument that is a reference to an object of the appropriate type whose
// value is used as an initial fill value. The third constructor is similar to
// the third, except that it accepts a variable number of initialization values
// for the Matrix. If there are fewer values than elements, the rest are set
// to zero. Finally, the last constructor takes a single argument consisting of
// a reference to a Matrix and duplicates its size and element values.
//
// Methods are provided for destructive scalar and Matrix addition,
// multiplication, check for equality and inequality, fill, reduce, and access
// and set individual elements. Finally, both the input and output operators
// are overloaded to allow for formatted input and output of matrix elements.
//
// Good matrix inversion is needed. We choose singular value decomposition,
// since it is general and works great for nearly singular cases. Singular
// value decomposition is preferred to LU decomposition, since the accuracy
// of the pivots is independent from the left->right top->down elimination.
// LU decomposition also does not give eigenvectors and eigenvalues when
// the matrix is symmetric.
//
// Several different constructors are provided. See .h file for brief descriptions.
//--------------------------------------------------------------------------------
#include "vnl_matrix.h"
#include <vcl_cassert.h>
#include <vcl_cstddef.h> // size_t
#include <vcl_cstdio.h> // EOF
#include <vcl_cstdlib.h> // abort()
#include <vcl_cctype.h> // isspace()
#include <vcl_iostream.h>
#include <vcl_vector.h>
#include <vcl_algorithm.h>
#include <vnl/vnl_math.h>
#include <vnl/vnl_vector.h>
#include <vnl/vnl_c_vector.h>
#include <vnl/vnl_numeric_traits.h>
//--------------------------------------------------------------------------------
#if VCL_HAS_SLICED_DESTRUCTOR_BUG
// vnl_matrix owns its data by default.
# define vnl_matrix_construct_hack() vnl_matrix_own_data = 1
#else
# define vnl_matrix_construct_hack()
#endif
// This macro allocates and initializes the dynamic storage used by a vnl_matrix.
#define vnl_matrix_alloc_blah() \
do { \
if (this->num_rows && this->num_cols) { \
/* Allocate memory to hold the row pointers */ \
this->data = vnl_c_vector<T>::allocate_Tptr(this->num_rows); \
/* Allocate memory to hold the elements of the matrix */ \
T* elmns = vnl_c_vector<T>::allocate_T(this->num_rows * this->num_cols); \
/* Fill in the array of row pointers */ \
for (unsigned int i = 0; i < this->num_rows; ++ i) \
this->data[i] = elmns + i*this->num_cols; \
} \
else { \
/* This is to make sure .begin() and .end() work for 0xN matrices: */ \
(this->data = vnl_c_vector<T>::allocate_Tptr(1))[0] = 0; \
} \
} while (false)
// This macro releases the dynamic storage used by a vnl_matrix.
#define vnl_matrix_free_blah \
do { \
if (this->data) { \
if (this->num_cols && this->num_rows) { \
vnl_c_vector<T>::deallocate(this->data[0], this->num_cols * this->num_rows); \
vnl_c_vector<T>::deallocate(this->data, this->num_rows); \
} \
else { \
vnl_c_vector<T>::deallocate(this->data, 1); \
} \
} \
} while (false)
//: Creates a matrix with given number of rows and columns.
// Elements are not initialized. O(m*n).
template <class T>
vnl_matrix<T>::vnl_matrix (unsigned rowz, unsigned colz)
: num_rows(rowz), num_cols(colz)
{
vnl_matrix_construct_hack();
vnl_matrix_alloc_blah();
}
//: Creates a matrix with given number of rows and columns, and initialize all elements to value. O(m*n).
template <class T>
vnl_matrix<T>::vnl_matrix (unsigned rowz, unsigned colz, T const& value)
: num_rows(rowz), num_cols(colz)
{
vnl_matrix_construct_hack();
vnl_matrix_alloc_blah();
vcl_fill_n( this->data[0], rowz * colz, value );
}
//: r rows, c cols, special type. Currently implements "identity" and "null".
template <class T>
vnl_matrix<T>::vnl_matrix(unsigned r, unsigned c, vnl_matrix_type t)
: num_rows(r), num_cols(c)
{
vnl_matrix_construct_hack();
vnl_matrix_alloc_blah();
switch (t) {
case vnl_matrix_identity:
assert(r == c);
for (unsigned int i = 0; i < r; ++ i)
for (unsigned int j = 0; j < c; ++ j)
this->data[i][j] = (i==j) ? T(1) : T(0);
break;
case vnl_matrix_null:
vcl_fill_n( this->data[0], r * c, T(0) );
break;
default:
assert(false);
break;
}
}
#if 1 // fsm: who uses this?
//: Creates a matrix with given dimension (rows, cols) and initialize first n elements, row-wise, to values. O(m*n).
template <class T>
vnl_matrix<T>::vnl_matrix (unsigned rowz, unsigned colz, unsigned n, T const values[])
: num_rows(rowz), num_cols(colz)
{
vnl_matrix_construct_hack();
vnl_matrix_alloc_blah();
if (n > rowz*colz)
n = rowz*colz;
vcl_copy( values, values + n, this->data[0] );
}
#endif
//: Creates a matrix from a block array of data, stored row-wise.
// O(m*n).
template <class T>
vnl_matrix<T>::vnl_matrix (T const* datablck, unsigned rowz, unsigned colz)
: num_rows(rowz), num_cols(colz)
{
vnl_matrix_construct_hack();
vnl_matrix_alloc_blah();
vcl_copy( datablck, datablck + rowz * colz, this->data[0] );
}
//: Creates a new matrix and copies all the elements.
// O(m*n).
template <class T>
vnl_matrix<T>::vnl_matrix (vnl_matrix<T> const& from)
: num_rows(from.num_rows), num_cols(from.num_cols)
{
vnl_matrix_construct_hack();
if (from.data && from.data[0]) {
vnl_matrix_alloc_blah();
T const *src = from.data[0];
vcl_copy( src, src + this->num_rows * this->num_cols, this->data[0] );
}
else {
num_rows = 0;
num_cols = 0;
data = 0;
}
}
//------------------------------------------------------------
template <class T>
vnl_matrix<T>::vnl_matrix (vnl_matrix<T> const &A, vnl_matrix<T> const &B, vnl_tag_add)
: num_rows(A.num_rows), num_cols(A.num_cols)
{
#ifndef NDEBUG
if (A.num_rows != B.num_rows || A.num_cols != B.num_cols)
vnl_error_matrix_dimension ("vnl_tag_add", A.num_rows, A.num_cols, B.num_rows, B.num_cols);
#endif
vnl_matrix_construct_hack();
vnl_matrix_alloc_blah();
unsigned int n = A.num_rows * A.num_cols;
T const *a = A.data[0];
T const *b = B.data[0];
T *dst = this->data[0];
for (unsigned int i=0; i<n; ++i)
dst[i] = T(a[i] + b[i]);
}
template <class T>
vnl_matrix<T>::vnl_matrix (vnl_matrix<T> const &A, vnl_matrix<T> const &B, vnl_tag_sub)
: num_rows(A.num_rows), num_cols(A.num_cols)
{
#ifndef NDEBUG
if (A.num_rows != B.num_rows || A.num_cols != B.num_cols)
vnl_error_matrix_dimension ("vnl_tag_sub", A.num_rows, A.num_cols, B.num_rows, B.num_cols);
#endif
vnl_matrix_construct_hack();
vnl_matrix_alloc_blah();
unsigned int n = A.num_rows * A.num_cols;
T const *a = A.data[0];
T const *b = B.data[0];
T *dst = this->data[0];
for (unsigned int i=0; i<n; ++i)
dst[i] = T(a[i] - b[i]);
}
template <class T>
vnl_matrix<T>::vnl_matrix (vnl_matrix<T> const &M, T s, vnl_tag_mul)
: num_rows(M.num_rows), num_cols(M.num_cols)
{
vnl_matrix_construct_hack();
vnl_matrix_alloc_blah();
unsigned int n = M.num_rows * M.num_cols;
T const *m = M.data[0];
T *dst = this->data[0];
for (unsigned int i=0; i<n; ++i)
dst[i] = T(m[i] * s);
}
template <class T>
vnl_matrix<T>::vnl_matrix (vnl_matrix<T> const &M, T s, vnl_tag_div)
: num_rows(M.num_rows), num_cols(M.num_cols)
{
vnl_matrix_construct_hack();
vnl_matrix_alloc_blah();
unsigned int n = M.num_rows * M.num_cols;
T const *m = M.data[0];
T *dst = this->data[0];
for (unsigned int i=0; i<n; ++i)
dst[i] = T(m[i] / s);
}
template <class T>
vnl_matrix<T>::vnl_matrix (vnl_matrix<T> const &M, T s, vnl_tag_add)
: num_rows(M.num_rows), num_cols(M.num_cols)
{
vnl_matrix_construct_hack();
vnl_matrix_alloc_blah();
unsigned int n = M.num_rows * M.num_cols;
T const *m = M.data[0];
T *dst = this->data[0];
for (unsigned int i=0; i<n; ++i)
dst[i] = T(m[i] + s);
}
template <class T>
vnl_matrix<T>::vnl_matrix (vnl_matrix<T> const &M, T s, vnl_tag_sub)
: num_rows(M.num_rows), num_cols(M.num_cols)
{
vnl_matrix_construct_hack();
vnl_matrix_alloc_blah();
unsigned int n = M.num_rows * M.num_cols;
T const *m = M.data[0];
T *dst = this->data[0];
for (unsigned int i=0; i<n; ++i)
dst[i] = T(m[i] - s);
}
template <class T>
vnl_matrix<T>::vnl_matrix (vnl_matrix<T> const &A, vnl_matrix<T> const &B, vnl_tag_mul)
: num_rows(A.num_rows), num_cols(B.num_cols)
{
#ifndef NDEBUG
if (A.num_cols != B.num_rows)
vnl_error_matrix_dimension("vnl_tag_mul", A.num_rows, A.num_cols, B.num_rows, B.num_cols);
#endif
unsigned int l = A.num_rows;
unsigned int m = A.num_cols; // == B.num_rows
unsigned int n = B.num_cols;
vnl_matrix_construct_hack();
vnl_matrix_alloc_blah();
for (unsigned int i=0; i<l; ++i) {
for (unsigned int k=0; k<n; ++k) {
T sum(0);
for (unsigned int j=0; j<m; ++j)
sum += T(A.data[i][j] * B.data[j][k]);
this->data[i][k] = sum;
}
}
}
//------------------------------------------------------------
template <class T>
vnl_matrix<T>::~vnl_matrix()
{
// save some fcalls if data is 0 (i.e. in matrix_fixed)
#if VCL_HAS_SLICED_DESTRUCTOR_BUG
if (data && vnl_matrix_own_data) destroy();
#else
if (data) destroy();
#endif
}
//: Frees up the dynamic storage used by matrix.
// O(m*n).
template <class T>
void vnl_matrix<T>::destroy()
{
vnl_matrix_free_blah;
}
template <class T>
void vnl_matrix<T>::clear()
{
if (data) {
destroy();
num_rows = 0;
num_cols = 0;
data = 0;
}
}
// Resizes the data arrays of THIS matrix to (rows x cols). O(m*n).
// Elements are not initialized, existing data is not preserved.
// Returns true if size is changed.
template <class T>
bool vnl_matrix<T>::set_size (unsigned rowz, unsigned colz)
{
if (this->data) {
// if no change in size, do not reallocate.
if (this->num_rows == rowz && this->num_cols == colz)
return false;
// else, simply release old storage and allocate new.
vnl_matrix_free_blah;
this->num_rows = rowz; this->num_cols = colz;
vnl_matrix_alloc_blah();
}
else {
// This happens if the matrix is default constructed.
this->num_rows = rowz; this->num_cols = colz;
vnl_matrix_alloc_blah();
}
return true;
}
#undef vnl_matrix_alloc_blah
#undef vnl_matrix_free_blah
//------------------------------------------------------------
//: Sets all elements of matrix to specified value. O(m*n).
template <class T>
vnl_matrix<T>& vnl_matrix<T>::fill (T const& value)
{
// not safe if data == NULL, due to data[0] call
if (data && data[0])
vcl_fill_n( this->data[0], this->num_rows * this->num_cols, value );
return *this;
}
//: Sets all diagonal elements of matrix to specified value. O(n).
template <class T>
vnl_matrix<T>& vnl_matrix<T>::fill_diagonal (T const& value)
{
for (unsigned int i = 0; i < this->num_rows && i < this->num_cols; ++i)
this->data[i][i] = value;
return *this;
}
//: Sets the diagonal elements of this matrix to the specified list of values.
template <class T>
vnl_matrix<T>& vnl_matrix<T>::set_diagonal(vnl_vector<T> const& diag)
{
assert(diag.size() >= this->num_rows ||
diag.size() >= this->num_cols);
// The length of the diagonal of a non-square matrix is the minimum of
// the matrix's width & height; that explains the "||" in the assert,
// and the "&&" in the upper bound for the "for".
for (unsigned int i = 0; i < this->num_rows && i < this->num_cols; ++i)
this->data[i][i] = diag[i];
return *this;
}
#if 0
//: Assigns value to all elements of a matrix. O(m*n).
template <class T>
vnl_matrix<T>& vnl_matrix<T>::operator= (T const& value)
{
return this->fill( value );
}
#endif // 0
//: Copies all elements of rhs matrix into lhs matrix. O(m*n).
// If needed, the arrays in lhs matrix are freed up, and new arrays are
// allocated to match the dimensions of the rhs matrix.
template <class T>
vnl_matrix<T>& vnl_matrix<T>::operator= (vnl_matrix<T> const& rhs)
{
if (this != &rhs) { // make sure *this != m
if (rhs.data) {
this->set_size(rhs.num_rows, rhs.num_cols);
if (rhs.data[0]) {
vcl_copy( rhs.data[0], rhs.data[0] + this->num_rows * this->num_cols, this->data[0] );
}
}
else {
// rhs is default-constructed.
clear();
}
}
return *this;
}
template <class T>
void vnl_matrix<T>::print(vcl_ostream& os) const
{
for (unsigned int i = 0; i < this->rows(); i++) {
for (unsigned int j = 0; j < this->columns(); j++)
os << this->data[i][j] << ' ';
os << '\n';
}
}
//: Prints the 2D array of elements of a matrix out to a stream.
// O(m*n).
template <class T>
vcl_ostream& operator<< (vcl_ostream& os, vnl_matrix<T> const& m)
{
for (unsigned int i = 0; i < m.rows(); ++i) {
for (unsigned int j = 0; j < m.columns(); ++j)
os << m(i, j) << ' ';
os << '\n';
}
return os;
}
//: Read a vnl_matrix from an ascii vcl_istream.
// Automatically determines file size if the input matrix has zero size.
template <class T>
vcl_istream& operator>>(vcl_istream& s, vnl_matrix<T>& M)
{
M.read_ascii(s);
return s;
}
template <class T>
void vnl_matrix<T>::inline_function_tickler()
{
vnl_matrix<T> M;
// fsm: hack to get 2.96 to instantiate the inline function.
M = T(1) + T(3) * M;
}
template <class T>
vnl_matrix<T>& vnl_matrix<T>::operator+= (T value)
{
for (unsigned int i = 0; i < this->num_rows; i++)
for (unsigned int j = 0; j < this->num_cols; j++)
this->data[i][j] += value;
return *this;
}
template <class T>
vnl_matrix<T>& vnl_matrix<T>::operator-= (T value)
{
for (unsigned int i = 0; i < this->num_rows; i++)
for (unsigned int j = 0; j < this->num_cols; j++)
this->data[i][j] -= value;
return *this;
}
template <class T>
vnl_matrix<T>& vnl_matrix<T>::operator*= (T value)
{
for (unsigned int i = 0; i < this->num_rows; i++)
for (unsigned int j = 0; j < this->num_cols; j++)
this->data[i][j] *= value;
return *this;
}
template <class T>
vnl_matrix<T>& vnl_matrix<T>::operator/= (T value)
{
for (unsigned int i = 0; i < this->num_rows; i++)
for (unsigned int j = 0; j < this->num_cols; j++)
this->data[i][j] /= value;
return *this;
}
//: Adds lhs matrix with rhs matrix, and stores in place in lhs matrix.
// O(m*n). The dimensions of the two matrices must be identical.
template <class T>
vnl_matrix<T>& vnl_matrix<T>::operator+= (vnl_matrix<T> const& rhs)
{
#ifndef NDEBUG
if (this->num_rows != rhs.num_rows ||
this->num_cols != rhs.num_cols) // Size match?
vnl_error_matrix_dimension ("operator+=",
this->num_rows, this->num_cols,
rhs.num_rows, rhs.num_cols);
#endif
for (unsigned int i = 0; i < this->num_rows; i++) // For each row
for (unsigned int j = 0; j < this->num_cols; j++) // For each element in column
this->data[i][j] += rhs.data[i][j]; // Add elements
return *this;
}
//: Subtract lhs matrix with rhs matrix and store in place in lhs matrix.
// O(m*n).
// The dimensions of the two matrices must be identical.
template <class T>
vnl_matrix<T>& vnl_matrix<T>::operator-= (vnl_matrix<T> const& rhs)
{
#ifndef NDEBUG
if (this->num_rows != rhs.num_rows ||
this->num_cols != rhs.num_cols) // Size?
vnl_error_matrix_dimension ("operator-=",
this->num_rows, this->num_cols,
rhs.num_rows, rhs.num_cols);
#endif
for (unsigned int i = 0; i < this->num_rows; i++)
for (unsigned int j = 0; j < this->num_cols; j++)
this->data[i][j] -= rhs.data[i][j];
return *this;
}
template <class T>
vnl_matrix<T> operator- (T const& value, vnl_matrix<T> const& m)
{
vnl_matrix<T> result(m.rows(),m.columns());
for (unsigned int i = 0; i < m.rows(); i++) // For each row
for (unsigned int j = 0; j < m.columns(); j++) // For each element in column
result.put(i,j, T(value - m.get(i,j)) ); // subtract from value element.
return result;
}
#if 0 // commented out
//: Returns new matrix which is the product of m1 with m2, m1 * m2.
// O(n^3). Number of columns of first matrix must match number of rows
// of second matrix.
template <class T>
vnl_matrix<T> vnl_matrix<T>::operator* (vnl_matrix<T> const& rhs) const
{
#ifndef NDEBUG
if (this->num_cols != rhs.num_rows) // dimensions do not match?
vnl_error_matrix_dimension("operator*",
this->num_rows, this->num_cols,
rhs.num_rows, rhs.num_cols);
#endif
vnl_matrix<T> result(this->num_rows, rhs.num_cols); // Temp to store product
for (unsigned i = 0; i < this->num_rows; i++) { // For each row
for (unsigned j = 0; j < rhs.num_cols; j++) { // For each element in column
T sum = 0;
for (unsigned k = 0; k < this->num_cols; k++) // Loop over column values
sum += (this->data[i][k] * rhs.data[k][j]); // Multiply
result(i,j) = sum;
}
}
return result;
}
#endif
//: Returns new matrix which is the negation of THIS matrix.
// O(m*n).
template <class T>
vnl_matrix<T> vnl_matrix<T>::operator- () const
{
vnl_matrix<T> result(this->num_rows, this->num_cols);
for (unsigned int i = 0; i < this->num_rows; i++)
for (unsigned int j = 0; j < this->num_cols; j++)
result.data[i][j] = - this->data[i][j];
return result;
}
#if 0 // commented out
//: Returns new matrix with elements of lhs matrix added with value.
// O(m*n).
template <class T>
vnl_matrix<T> vnl_matrix<T>::operator+ (T const& value) const
{
vnl_matrix<T> result(this->num_rows, this->num_cols);
for (unsigned i = 0; i < this->num_rows; i++) // For each row
for (unsigned j = 0; j < this->num_cols; j++) // For each element in column
result.data[i][j] = (this->data[i][j] + value); // Add scalar
return result;
}
//: Returns new matrix with elements of lhs matrix multiplied with value.
// O(m*n).
template <class T>
vnl_matrix<T> vnl_matrix<T>::operator* (T const& value) const
{
vnl_matrix<T> result(this->num_rows, this->num_cols);
for (unsigned i = 0; i < this->num_rows; i++) // For each row
for (unsigned j = 0; j < this->num_cols; j++) // For each element in column
result.data[i][j] = (this->data[i][j] * value); // Multiply
return result;
}
//: Returns new matrix with elements of lhs matrix divided by value. O(m*n).
template <class T>
vnl_matrix<T> vnl_matrix<T>::operator/ (T const& value) const
{
vnl_matrix<T> result(this->num_rows, this->num_cols);
for (unsigned i = 0; i < this->num_rows; i++) // For each row
for (unsigned j = 0; j < this->num_cols; j++) // For each element in column
result.data[i][j] = (this->data[i][j] / value); // Divide
return result;
}
#endif
//: Return the matrix made by applying "f" to each element.
template <class T>
vnl_matrix<T> vnl_matrix<T>::apply(T (*f)(T const&)) const
{
vnl_matrix<T> ret(num_rows, num_cols);
vnl_c_vector<T>::apply(this->data[0], num_rows * num_cols, f, ret.data_block());
return ret;
}
//: Return the matrix made by applying "f" to each element.
template <class T>
vnl_matrix<T> vnl_matrix<T>::apply(T (*f)(T)) const
{
vnl_matrix<T> ret(num_rows, num_cols);
vnl_c_vector<T>::apply(this->data[0], num_rows * num_cols, f, ret.data_block());
return ret;
}
////--------------------------- Additions------------------------------------
//: Returns new matrix with rows and columns transposed.
// O(m*n).
template <class T>
vnl_matrix<T> vnl_matrix<T>::transpose() const
{
vnl_matrix<T> result(this->num_cols, this->num_rows);
for (unsigned int i = 0; i < this->num_cols; i++)
for (unsigned int j = 0; j < this->num_rows; j++)
result.data[i][j] = this->data[j][i];
return result;
}
// adjoint/hermitian transpose
template <class T>
vnl_matrix<T> vnl_matrix<T>::conjugate_transpose() const
{
vnl_matrix<T> result(transpose());
vnl_c_vector<T>::conjugate(result.begin(), // src
result.begin(), // dst
result.size()); // size of block
return result;
}
//: Replaces the submatrix of THIS matrix, starting at top left corner, by the elements of matrix m. O(m*n).
// This is the reverse of extract().
template <class T>
vnl_matrix<T>& vnl_matrix<T>::update (vnl_matrix<T> const& m,
unsigned top, unsigned left)
{
unsigned int bottom = top + m.num_rows;
unsigned int right = left + m.num_cols;
#ifndef NDEBUG
if (this->num_rows < bottom || this->num_cols < right)
vnl_error_matrix_dimension ("update",
bottom, right, m.num_rows, m.num_cols);
#endif
for (unsigned int i = top; i < bottom; i++)
for (unsigned int j = left; j < right; j++)
this->data[i][j] = m.data[i-top][j-left];
return *this;
}
//: Returns a copy of submatrix of THIS matrix, specified by the top-left corner and size in rows, cols. O(m*n).
// Use update() to copy new values of this submatrix back into THIS matrix.
template <class T>
vnl_matrix<T> vnl_matrix<T>::extract (unsigned rowz, unsigned colz,
unsigned top, unsigned left) const {
vnl_matrix<T> result(rowz, colz);
this->extract( result, top, left );
return result;
}
template <class T>
void vnl_matrix<T>::extract( vnl_matrix<T>& submatrix,
unsigned top, unsigned left) const {
unsigned const rowz = submatrix.rows();
unsigned const colz = submatrix.cols();
#ifndef NDEBUG
unsigned int bottom = top + rowz;
unsigned int right = left + colz;
if ((this->num_rows < bottom) || (this->num_cols < right))
vnl_error_matrix_dimension ("extract",
this->num_rows, this->num_cols, bottom, right);
#endif
for (unsigned int i = 0; i < rowz; i++) // actual copy of all elements
for (unsigned int j = 0; j < colz; j++) // in submatrix
submatrix.data[i][j] = data[top+i][left+j];
}
//: Returns the dot product of the two matrices. O(m*n).
// This is the sum of all pairwise products of the elements m1[i,j]*m2[i,j].
template <class T>
T dot_product (vnl_matrix<T> const& m1, vnl_matrix<T> const& m2)
{
#ifndef NDEBUG
if (m1.rows() != m2.rows() || m1.columns() != m2.columns()) // Size?
vnl_error_matrix_dimension ("dot_product",
m1.rows(), m1.columns(),
m2.rows(), m2.columns());
#endif
return vnl_c_vector<T>::dot_product(m1.begin(), m2.begin(), m1.rows()*m1.cols());
}
//: Hermitian inner product.
// O(mn).
template <class T>
T inner_product (vnl_matrix<T> const& m1, vnl_matrix<T> const& m2)
{
#ifndef NDEBUG
if (m1.rows() != m2.rows() || m1.columns() != m2.columns()) // Size?
vnl_error_matrix_dimension ("inner_product",
m1.rows(), m1.columns(),
m2.rows(), m2.columns());
#endif
return vnl_c_vector<T>::inner_product(m1.begin(), m2.begin(), m1.rows()*m1.cols());
}
// cos_angle. O(mn).
template <class T>
T cos_angle (vnl_matrix<T> const& a, vnl_matrix<T> const& b)
{
typedef typename vnl_numeric_traits<T>::abs_t Abs_t;
typedef typename vnl_numeric_traits<Abs_t>::real_t abs_r;
T ab = inner_product(a,b);
Abs_t a_b = (Abs_t)vcl_sqrt( (abs_r)vnl_math_abs(inner_product(a,a) * inner_product(b,b)) );
return T( ab / a_b);
}
//: Returns new matrix whose elements are the products m1[ij]*m2[ij].
// O(m*n).
template <class T>
vnl_matrix<T> element_product (vnl_matrix<T> const& m1,
vnl_matrix<T> const& m2)
{
#ifndef NDEBUG
if (m1.rows() != m2.rows() || m1.columns() != m2.columns()) // Size?
vnl_error_matrix_dimension ("element_product",
m1.rows(), m1.columns(), m2.rows(), m2.columns());
#endif
vnl_matrix<T> result(m1.rows(), m1.columns());
for (unsigned int i = 0; i < m1.rows(); i++)
for (unsigned int j = 0; j < m1.columns(); j++)
result.put(i,j, T(m1.get(i,j) * m2.get(i,j)) );
return result;
}
//: Returns new matrix whose elements are the quotients m1[ij]/m2[ij].
// O(m*n).
template <class T>
vnl_matrix<T> element_quotient (vnl_matrix<T> const& m1,
vnl_matrix<T> const& m2)
{
#ifndef NDEBUG
if (m1.rows() != m2.rows() || m1.columns() != m2.columns()) // Size?
vnl_error_matrix_dimension("element_quotient",
m1.rows(), m1.columns(), m2.rows(), m2.columns());
#endif
vnl_matrix<T> result(m1.rows(), m1.columns());
for (unsigned int i = 0; i < m1.rows(); i++)
for (unsigned int j = 0; j < m1.columns(); j++)
result.put(i,j, T(m1.get(i,j) / m2.get(i,j)) );
return result;
}
//: Fill this matrix with the given data.
// We assume that p points to a contiguous rows*cols array, stored rowwise.
template <class T>
vnl_matrix<T>& vnl_matrix<T>::copy_in(T const *p)
{
vcl_copy( p, p + this->num_rows * this->num_cols, this->data[0] );
return *this;
}
//: Fill the given array with this matrix.
// We assume that p points to a contiguous rows*cols array, stored rowwise.
template <class T>
void vnl_matrix<T>::copy_out(T *p) const
{
vcl_copy( this->data[0], this->data[0] + this->num_rows * this->num_cols, p );
}
//: Fill this matrix with a matrix having 1s on the main diagonal and 0s elsewhere.
template <class T>
vnl_matrix<T>& vnl_matrix<T>::set_identity()
{
for (unsigned int i = 0; i < this->num_rows; ++i) // For each row in the Matrix
for (unsigned int j = 0; j < this->num_cols; ++j) // For each element in column
this->data[i][j] = (i==j) ? T(1) : T(0);
return *this;
}
//: Make each row of the matrix have unit norm.
// All-zero rows are ignored.
template <class T>
vnl_matrix<T>& vnl_matrix<T>::normalize_rows()
{
typedef typename vnl_numeric_traits<T>::abs_t Abs_t;
typedef typename vnl_numeric_traits<T>::real_t Real_t;
typedef typename vnl_numeric_traits<Real_t>::abs_t abs_real_t;
for (unsigned int i = 0; i < this->num_rows; ++i) { // For each row in the Matrix
Abs_t norm(0); // double will not do for all types.
for (unsigned int j = 0; j < this->num_cols; ++j) // For each element in row
norm += vnl_math_squared_magnitude(this->data[i][j]);
if (norm != 0) {
abs_real_t scale = abs_real_t(1)/(vcl_sqrt((abs_real_t)norm));
for (unsigned int j = 0; j < this->num_cols; ++j)
this->data[i][j] = T(Real_t(this->data[i][j]) * scale);
}
}
return *this;
}
//: Make each column of the matrix have unit norm.
// All-zero columns are ignored.
template <class T>
vnl_matrix<T>& vnl_matrix<T>::normalize_columns()
{
typedef typename vnl_numeric_traits<T>::abs_t Abs_t;
typedef typename vnl_numeric_traits<T>::real_t Real_t;
typedef typename vnl_numeric_traits<Real_t>::abs_t abs_real_t;
for (unsigned int j = 0; j < this->num_cols; j++) { // For each column in the Matrix
Abs_t norm(0); // double will not do for all types.
for (unsigned int i = 0; i < this->num_rows; i++)
norm += vnl_math_squared_magnitude(this->data[i][j]);
if (norm != 0) {
abs_real_t scale = abs_real_t(1)/(vcl_sqrt((abs_real_t)norm));
for (unsigned int i = 0; i < this->num_rows; i++)
this->data[i][j] = T(Real_t(this->data[i][j]) * scale);
}
}
return *this;
}
//: Multiply row[row_index] by value
template <class T>
vnl_matrix<T>& vnl_matrix<T>::scale_row(unsigned row_index, T value)
{
#ifndef NDEBUG
if (row_index >= this->num_rows)
vnl_error_matrix_row_index("scale_row", row_index);
#endif
for (unsigned int j = 0; j < this->num_cols; j++) // For each element in row
this->data[row_index][j] *= value;
return *this;
}
//: Multiply column[column_index] by value
template <class T>
vnl_matrix<T>& vnl_matrix<T>::scale_column(unsigned column_index, T value)
{
#ifndef NDEBUG
if (column_index >= this->num_cols)
vnl_error_matrix_col_index("scale_column", column_index);
#endif
for (unsigned int j = 0; j < this->num_rows; j++) // For each element in column
this->data[j][column_index] *= value;
return *this;
}
//: Returns a copy of n rows, starting from "row"
template <class T>
vnl_matrix<T> vnl_matrix<T>::get_n_rows (unsigned row, unsigned n) const
{
#ifndef NDEBUG
if (row + n > this->num_rows)
vnl_error_matrix_row_index ("get_n_rows", row);
#endif
// Extract data rowwise.
return vnl_matrix<T>(data[row], n, this->num_cols);
}
//: Returns a copy of n columns, starting from "column".
template <class T>
vnl_matrix<T> vnl_matrix<T>::get_n_columns (unsigned column, unsigned n) const
{
#ifndef NDEBUG
if (column + n > this->num_cols)
vnl_error_matrix_col_index ("get_n_columns", column);
#endif
vnl_matrix<T> result(this->num_rows, n);
for (unsigned int c = 0; c < n; ++c)
for (unsigned int r = 0; r < this->num_rows; ++r)
result(r, c) = data[r][column + c];
return result;
}
//: Create a vector out of row[row_index].
template <class T>
vnl_vector<T> vnl_matrix<T>::get_row(unsigned row_index) const
{
#ifdef ERROR_CHECKING
if (row_index >= this->num_rows)
vnl_error_matrix_row_index ("get_row", row_index);
#endif
vnl_vector<T> v(this->num_cols);
for (unsigned int j = 0; j < this->num_cols; j++) // For each element in row
v[j] = this->data[row_index][j];
return v;
}
//: Create a vector out of column[column_index].
template <class T>
vnl_vector<T> vnl_matrix<T>::get_column(unsigned column_index) const
{
#ifdef ERROR_CHECKING
if (column_index >= this->num_cols)
vnl_error_matrix_col_index ("get_column", column_index);
#endif
vnl_vector<T> v(this->num_rows);
for (unsigned int j = 0; j < this->num_rows; j++) // For each element in row
v[j] = this->data[j][column_index];
return v;
}
//: Return a vector with the content of the (main) diagonal
template <class T>
vnl_vector<T> vnl_matrix<T>::get_diagonal() const
{
vnl_vector<T> v(this->num_rows < this->num_cols ? this->num_rows : this->num_cols);
for (unsigned int j = 0; j < this->num_rows && j < this->num_cols; ++j)
v[j] = this->data[j][j];
return v;
}
//--------------------------------------------------------------------------------
//: Set row[row_index] to data at given address. No bounds check.
template <class T>
vnl_matrix<T>& vnl_matrix<T>::set_row(unsigned row_index, T const *v)
{
for (unsigned int j = 0; j < this->num_cols; j++) // For each element in row
this->data[row_index][j] = v[j];
return *this;
}
//: Set row[row_index] to given vector.
template <class T>
vnl_matrix<T>& vnl_matrix<T>::set_row(unsigned row_index, vnl_vector<T> const &v)
{
#ifndef NDEBUG
if (v.size() != this->num_cols)
vnl_error_vector_dimension ("vnl_matrix::set_row", v.size(), this->num_cols);
#endif
set_row(row_index,v.data_block());
return *this;
}
//: Set row[row_index] to given value.
template <class T>
vnl_matrix<T>& vnl_matrix<T>::set_row(unsigned row_index, T v)
{
for (unsigned int j = 0; j < this->num_cols; j++) // For each element in row
this->data[row_index][j] = v;
return *this;
}
//--------------------------------------------------------------------------------
//: Set column[column_index] to data at given address.
template <class T>
vnl_matrix<T>& vnl_matrix<T>::set_column(unsigned column_index, T const *v)
{
for (unsigned int i = 0; i < this->num_rows; i++) // For each element in row
this->data[i][column_index] = v[i];
return *this;
}
//: Set column[column_index] to given vector.
template <class T>
vnl_matrix<T>& vnl_matrix<T>::set_column(unsigned column_index, vnl_vector<T> const &v)
{
#ifndef NDEBUG
if (v.size() != this->num_rows)
vnl_error_vector_dimension ("vnl_matrix::set_column", v.size(), this->num_rows);
#endif
set_column(column_index,v.data_block());
return *this;
}
//: Set column[column_index] to given value.
template <class T>
vnl_matrix<T>& vnl_matrix<T>::set_column(unsigned column_index, T v)
{
for (unsigned int j = 0; j < this->num_rows; j++) // For each element in row
this->data[j][column_index] = v;
return *this;
}
//: Set columns starting at starting_column to given matrix
template <class T>
vnl_matrix<T>& vnl_matrix<T>::set_columns(unsigned starting_column, vnl_matrix<T> const& m)
{
#ifndef NDEBUG
if (this->num_rows != m.num_rows ||
this->num_cols < m.num_cols + starting_column) // Size match?
vnl_error_matrix_dimension ("set_columns",
this->num_rows, this->num_cols,
m.num_rows, m.num_cols);
#endif
for (unsigned int j = 0; j < m.num_cols; ++j)
for (unsigned int i = 0; i < this->num_rows; i++) // For each element in row
this->data[i][starting_column + j] = m.data[i][j];
return *this;
}
//--------------------------------------------------------------------------------
//: Two matrices are equal if and only if they have the same dimensions and the same values.
// O(m*n).
// Elements are compared with operator== as default.
// Change this default with set_compare() at run time or by specializing
// vnl_matrix_compare at compile time.
template <class T>
bool vnl_matrix<T>::operator_eq(vnl_matrix<T> const& rhs) const
{
if (this == &rhs) // same object => equal.
return true;
if (this->num_rows != rhs.num_rows || this->num_cols != rhs.num_cols)
return false; // different sizes => not equal.
for (unsigned int i = 0; i < this->num_rows; i++) // For each row
for (unsigned int j = 0; j < this->num_cols; j++) // For each column
if (!(this->data[i][j] == rhs.data[i][j])) // different element ?
return false; // Then not equal.
return true; // Else same; return true
}
template <class T>
bool vnl_matrix<T>::is_equal(vnl_matrix<T> const& rhs, double tol) const
{
if (this == &rhs) // same object => equal.
return true;
if (this->num_rows != rhs.num_rows || this->num_cols != rhs.num_cols)
return false; // different sizes => not equal.
for (unsigned int i = 0; i < this->rows(); ++i)
for (unsigned int j = 0; j < this->columns(); ++j)
if (vnl_math_abs(this->data[i][j] - rhs.data[i][j]) > tol)
return false; // difference greater than tol
return true;
}
template <class T>
bool vnl_matrix<T>::is_identity() const
{
T const zero(0);
T const one(1);
for (unsigned int i = 0; i < this->rows(); ++i)
for (unsigned int j = 0; j < this->columns(); ++j) {
T xm = (*this)(i,j);
if ( !((i == j) ? (xm == one) : (xm == zero)) )
return false;
}
return true;
}
//: Return true if maximum absolute deviation of M from identity is <= tol.
template <class T>
bool vnl_matrix<T>::is_identity(double tol) const
{
T one(1);
for (unsigned int i = 0; i < this->rows(); ++i)
for (unsigned int j = 0; j < this->columns(); ++j) {
T xm = (*this)(i,j);
abs_t absdev = (i == j) ? vnl_math_abs(xm - one) : vnl_math_abs(xm);
if (absdev > tol)
return false;
}
return true;
}
template <class T>
bool vnl_matrix<T>::is_zero() const
{
T const zero(0);
for (unsigned int i = 0; i < this->rows(); ++i)
for (unsigned int j = 0; j < this->columns(); ++j)
if ( !( (*this)(i, j) == zero) )
return false;
return true;
}
//: Return true if max(abs((*this))) <= tol.
template <class T>
bool vnl_matrix<T>::is_zero(double tol) const
{
for (unsigned int i = 0; i < this->rows(); ++i)
for (unsigned int j = 0; j < this->columns(); ++j)
if (vnl_math_abs((*this)(i,j)) > tol)
return false;
return true;
}
//: Return true if any element of (*this) is nan
template <class T>
bool vnl_matrix<T>::has_nans() const
{
for (unsigned int i = 0; i < this->rows(); ++i)
for (unsigned int j = 0; j < this->columns(); ++j)
if (vnl_math_isnan((*this)(i,j)))
return true;
return false;
}
//: Return false if any element of (*this) is inf or nan
template <class T>
bool vnl_matrix<T>::is_finite() const
{
for (unsigned int i = 0; i < this->rows(); ++i)
for (unsigned int j = 0; j < this->columns(); ++j)
if (!vnl_math_isfinite((*this)(i,j)))
return false;
return true;
}
//: Abort if any element of M is inf or nan
template <class T>
void vnl_matrix<T>::assert_finite_internal() const
{
if (is_finite())
return;
vcl_cerr << "\n\n" __FILE__ ": " << __LINE__ << ": matrix has non-finite elements\n";
if (rows() <= 20 && cols() <= 20) {
vcl_cerr << __FILE__ ": here it is:\n" << *this;
}
else {
vcl_cerr << __FILE__ ": it is quite big (" << rows() << 'x' << cols() << ")\n"
<< __FILE__ ": in the following picture '-' means finite and '*' means non-finite:\n";
for (unsigned int i=0; i<rows(); ++i) {
for (unsigned int j=0; j<cols(); ++j)
vcl_cerr << char(vnl_math_isfinite((*this)(i, j)) ? '-' : '*');
vcl_cerr << '\n';
}
}
vcl_cerr << __FILE__ ": calling abort()\n";
vcl_abort();
}
//: Abort unless M has the given size.
template <class T>
void vnl_matrix<T>::assert_size_internal(unsigned rs,unsigned cs) const
{
if (this->rows()!=rs || this->cols()!=cs) {
vcl_cerr << __FILE__ ": size is " << this->rows() << 'x' << this->cols()
<< ". should be " << rs << 'x' << cs << vcl_endl;
vcl_abort();
}
}
//: Read a vnl_matrix from an ascii vcl_istream.
// Automatically determines file size if the input matrix has zero size.
template <class T>
bool vnl_matrix<T>::read_ascii(vcl_istream& s)
{
if (!s.good()) {
vcl_cerr << __FILE__ ": vnl_matrix<T>::read_ascii: Called with bad stream\n";
return false;
}
bool size_known = (this->rows() != 0);
if (size_known) {
for (unsigned int i = 0; i < this->rows(); ++i)
for (unsigned int j = 0; j < this->columns(); ++j)
s >> this->data[i][j];
return s.good() || s.eof();
}
bool debug = false;
vcl_vector<T> first_row_vals;
if (debug)
vcl_cerr << __FILE__ ": vnl_matrix<T>::read_ascii: Determining file dimensions: ";
for (;;) {
// Clear whitespace, looking for a newline
while (true)
{
int c = s.get();
if (c == EOF)
goto loademup;
if (!vcl_isspace(c)) {
if (!s.putback(char(c)).good())
vcl_cerr << "vnl_matrix<T>::read_ascii: Could not push back '" << c << "'\n";
goto readfloat;
}
// First newline after first number tells us the column dimension
if (c == '\n' && first_row_vals.size() > 0) {
goto loademup;
}
}
readfloat:
T val;
s >> val;
if (!s.fail())
first_row_vals.push_back(val);
if (s.eof())
goto loademup;
}
loademup:
vcl_size_t colz = first_row_vals.size();
if (debug) vcl_cerr << colz << " cols, ";
if (colz == 0)
return false;
// need to be careful with resizing here as will often be reading humungous files
// So let's just build an array of row pointers
vcl_vector<T*> row_vals;
row_vals.reserve(1000);
{
// Copy first row. Can't use first_row_vals, as may be a vector of bool...
T* row = vnl_c_vector<T>::allocate_T(colz);
for (unsigned int k = 0; k < colz; ++k)
row[k] = first_row_vals[k];
row_vals.push_back(row);
}
while (true)
{
T* row = vnl_c_vector<T>::allocate_T(colz);
if (row == 0) {
vcl_cerr << "vnl_matrix<T>::read_ascii: Error, Out of memory on row "
<< row_vals.size() << vcl_endl;
return false;
}
s >> row[0];
if (!s.good())
{
vnl_c_vector<T>::deallocate(row, colz);
break;
}
for (unsigned int k = 1; k < colz; ++k) {
if (s.eof()) {
vcl_cerr << "vnl_matrix<T>::read_ascii: Error, EOF on row "
<< row_vals.size() << ", column " << k << vcl_endl;
return false;
}
s >> row[k];
if (s.fail()) {
vcl_cerr << "vnl_matrix<T>::read_ascii: Error, row "
<< row_vals.size() << " failed on column " << k << vcl_endl;
return false;
}
}
row_vals.push_back(row);
}
vcl_size_t rowz = row_vals.size();
if (debug)
vcl_cerr << rowz << " rows.\n";
set_size(rowz, colz);
T* p = this->data[0];
for (unsigned int i = 0; i < rowz; ++i) {
for (unsigned int j = 0; j < colz; ++j)
*p++ = row_vals[i][j];
/*if (i>0)*/ vnl_c_vector<T>::deallocate(row_vals[i], colz);
}
return true;
}
//: Read a vnl_matrix from an ascii vcl_istream.
// Automatically determines file size if the input matrix has zero size.
// This is a static method so you can type
// <verb>
// vnl_matrix<float> M = vnl_matrix<float>::read(cin);
// </verb>
// which many people prefer to the ">>" alternative.
template <class T>
vnl_matrix<T> vnl_matrix<T>::read(vcl_istream& s)
{
vnl_matrix<T> M;
s >> M;
return M;
}
template <class T>
void vnl_matrix<T>::swap(vnl_matrix<T> &that)
{
vcl_swap(this->num_rows, that.num_rows);
vcl_swap(this->num_cols, that.num_cols);
vcl_swap(this->data, that.data);
}
//: Reverse order of rows. Name is from Matlab, meaning "flip upside down".
template <class T>
vnl_matrix<T>& vnl_matrix<T>::flipud()
{
unsigned int n = this->rows();
unsigned int colz = this->columns();
unsigned int m = n / 2;
for (unsigned int r = 0; r < m; ++r) {
unsigned int r1 = r;
unsigned int r2 = n - 1 - r;
for (unsigned int c = 0; c < colz; ++c) {
T tmp = (*this)(r1, c);
(*this)(r1, c) = (*this)(r2, c);
(*this)(r2, c) = tmp;
}
}
return *this;
}
//: Reverse order of columns.
template <class T>
vnl_matrix<T>& vnl_matrix<T>::fliplr()
{
unsigned int n = this->cols();
unsigned int rowz = this->rows();
unsigned int m = n / 2;
for (unsigned int c = 0; c < m; ++c) {
unsigned int c1 = c;
unsigned int c2 = n - 1 - c;
for (unsigned int r = 0; r < rowz; ++r) {
T tmp = (*this)(r, c1);
(*this)(r, c1) = (*this)(r, c2);
(*this)(r, c2) = tmp;
}
}
return *this;
}
// || M || = \max \sum | M |
// 1 j i ij
template <class T>
typename vnl_matrix<T>::abs_t vnl_matrix<T>::operator_one_norm() const
{
abs_t max = 0;
for (unsigned int j=0; j<this->num_cols; ++j) {
abs_t tmp = 0;
for (unsigned int i=0; i<this->num_rows; ++i)
tmp += vnl_math_abs(this->data[i][j]);
if (tmp > max)
max = tmp;
}
return max;
}
// || M || = \max \sum | M |
// oo i j ij
template <class T>
typename vnl_matrix<T>::abs_t vnl_matrix<T>::operator_inf_norm() const
{
abs_t max = 0;
for (unsigned int i=0; i<this->num_rows; ++i) {
abs_t tmp = 0;
for (unsigned int j=0; j<this->num_cols; ++j)
tmp += vnl_math_abs(this->data[i][j]);
if (tmp > max)
max = tmp;
}
return max;
}
template <class doublereal> // ideally, char* should be bool* - PVr
int vnl_inplace_transpose(doublereal *a, unsigned m, unsigned n, char* move, unsigned iwrk)
{
doublereal b, c;
int k = m * n - 1;
int iter, i1, i2, im, i1c, i2c, ncount, max_;
// *****
// ALGORITHM 380 - REVISED
// *****
// A IS A ONE-DIMENSIONAL ARRAY OF LENGTH MN=M*N, WHICH
// CONTAINS THE MXN MATRIX TO BE TRANSPOSED (STORED
// COLUMNWISE). MOVE IS A ONE-DIMENSIONAL ARRAY OF LENGTH IWRK
// USED TO STORE INFORMATION TO SPEED UP THE PROCESS. THE
// VALUE IWRK=(M+N)/2 IS RECOMMENDED. IOK INDICATES THE
// SUCCESS OR FAILURE OF THE ROUTINE.
// NORMAL RETURN IOK=0
// ERRORS IOK=-2 ,IWRK NEGATIVE OR ZERO
// IOK.GT.0, (SHOULD NEVER OCCUR),IN THIS CASE
// WE SET IOK EQUAL TO THE FINAL VALUE OF ITER WHEN THE SEARCH
// IS COMPLETED BUT SOME LOOPS HAVE NOT BEEN MOVED
// NOTE * MOVE(I) WILL STAY ZERO FOR FIXED POINTS
if (m < 2 || n < 2)
return 0; // JUST RETURN IF MATRIX IS SINGLE ROW OR COLUMN
if (iwrk < 1)
return -2; // ERROR RETURN
if (m == n) {
// IF MATRIX IS SQUARE, EXCHANGE ELEMENTS A(I,J) AND A(J,I).
for (unsigned i = 0; i < n; ++i)
for (unsigned j = i+1; j < n; ++j) {
i1 = i + j * n;
i2 = j + i * m;
b = a[i1];
a[i1] = a[i2];
a[i2] = b;
}
return 0; // NORMAL RETURN
}
ncount = 2;
for (unsigned i = 0; i < iwrk; ++i)
move[i] = char(0); // false;
if (m > 2 && n > 2) {
// CALCULATE THE NUMBER OF FIXED POINTS, EUCLIDS ALGORITHM FOR GCD(M-1,N-1).
int ir2 = m - 1;
int ir1 = n - 1;
int ir0 = ir2 % ir1;
while (ir0 != 0) {
ir2 = ir1;
ir1 = ir0;
ir0 = ir2 % ir1;
}
ncount += ir1 - 1;
}
// SET INITIAL VALUES FOR SEARCH
iter = 1;
im = m;
// AT LEAST ONE LOOP MUST BE RE-ARRANGED
goto L80;
// SEARCH FOR LOOPS TO REARRANGE
L40:
max_ = k - iter;
++iter;
if (iter > max_)
return iter; // error return
im += m;
if (im > k)
im -= k;
i2 = im;
if (iter == i2)
goto L40;
if (iter <= (int)iwrk) {
if (move[iter-1])
goto L40;
else
goto L80;
}
while (i2 > iter && i2 < max_) {
i1 = i2;
i2 = m * i1 - k * (i1 / n);
}
if (i2 != iter)
goto L40;
// REARRANGE THE ELEMENTS OF A LOOP AND ITS COMPANION LOOP
L80:
i1 = iter;
b = a[i1];
i1c = k - iter;
c = a[i1c];
while (true) {
i2 = m * i1 - k * (i1 / n);
i2c = k - i2;
if (i1 <= (int)iwrk)
move[i1-1] = '1'; // true;
if (i1c <= (int)iwrk)
move[i1c-1] = '1'; // true;
ncount += 2;
if (i2 == iter)
break;
if (i2+iter == k) {
doublereal d = b; b = c; c = d; // interchange b and c
break;
}
a[i1] = a[i2];
a[i1c] = a[i2c];
i1 = i2;
i1c = i2c;
}
// FINAL STORE AND TEST FOR FINISHED
a[i1] = b;
a[i1c] = c;
if (ncount > k)
return 0; // NORMAL RETURN
goto L40;
} /* dtrans_ */
//: Transpose matrix M in place.
// Works for rectangular matrices using an enormously clever algorithm from ACM TOMS.
template <class T>
vnl_matrix<T>& vnl_matrix<T>::inplace_transpose()
{
unsigned m = rows();
unsigned n = columns();
unsigned iwrk = (m+n)/2;
vcl_vector<char> move(iwrk);
int iok = ::vnl_inplace_transpose(data_block(), n, m, &move[0], iwrk);
if (iok != 0)
vcl_cerr << __FILE__ " : inplace_transpose() -- iok = " << iok << vcl_endl;
this->num_rows = n;
this->num_cols = m;
// row pointers. we have to reallocate even when n<=m because
// vnl_c_vector<T>::deallocate needs to know n_when_allocatod.
{
T *tmp = data[0];
vnl_c_vector<T>::deallocate(data, m);
data = vnl_c_vector<T>::allocate_Tptr(n);
for (unsigned i=0; i<n; ++i)
data[i] = tmp + i * m;
}
return *this;
}
//------------------------------------------------------------------------------
#define VNL_MATRIX_INSTANTIATE(T) \
template vcl_ostream & operator<<(vcl_ostream &, vnl_matrix<T > const &); \
template class vnl_matrix<T >; \
template vcl_istream & operator>>(vcl_istream &, vnl_matrix<T > &); \
template vnl_matrix<T > operator-(T const &, vnl_matrix<T > const &); \
VCL_INSTANTIATE_INLINE(vnl_matrix<T > operator+(T const &, vnl_matrix<T > const &)); \
VCL_INSTANTIATE_INLINE(vnl_matrix<T > operator*(T const &, vnl_matrix<T > const &)); \
template T dot_product(vnl_matrix<T > const &, vnl_matrix<T > const &); \
template T inner_product(vnl_matrix<T > const &, vnl_matrix<T > const &); \
template T cos_angle(vnl_matrix<T > const &, vnl_matrix<T > const &); \
template vnl_matrix<T > element_product(vnl_matrix<T > const &, vnl_matrix<T > const &); \
template vnl_matrix<T > element_quotient(vnl_matrix<T > const &, vnl_matrix<T > const &); \
template int vnl_inplace_transpose(T*, unsigned, unsigned, char*, unsigned)
#endif // vnl_matrix_txx_
|