/usr/include/ITK-4.5/vnl/vnl_quaternion.txx is in libinsighttoolkit4-dev 4.5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 | // This is core/vnl/vnl_quaternion.txx
#ifndef vnl_quaternion_txx_
#define vnl_quaternion_txx_
//:
// \file
//
// Copyright (C) 1992 General Electric Company.
//
// Permission is granted to any individual or institution to use, copy, modify,
// and distribute this software, provided that this complete copyright and
// permission notice is maintained, intact, in all copies and supporting
// documentation.
//
// General Electric Company,
// provides this software "as is" without express or implied warranty.
//
// Created: VDN 06/23/92 design and implementation
//
// Quaternion IS-A vector, and is a special case of general n-dimensional space.
// The IS-A relationship is enforced with public inheritance.
// All member functions on vectors are applicable to quaternions.
//
// Rep Invariant:
// - norm = 1, for a rotation.
// - position vector represented by imaginary quaternion.
// References:
// - Horn, B.K.P. (1987) Closed-form solution of absolute orientation using
// unit quaternions. J. Opt. Soc. Am. Vol 4, No 4, April.
// - Horn, B.K.P. (1987) Robot Vision. MIT Press. pp. 437-551.
//
#include "vnl_quaternion.h"
#include <vcl_cmath.h>
#include <vcl_limits.h>
#include <vcl_iostream.h>
#include <vnl/vnl_cross.h>
#include <vnl/vnl_math.h>
//: Creates a quaternion from its ordered components.
// x, y, z denote the imaginary part, which are the coordinates
// of the rotation axis multiplied by the sine of half the
// angle of rotation. r denotes the real part, or the
// cosine of half the angle of rotation. Default is to
// create a null quaternion, corresponding to a null rotation
// or an identity transform, which has undefined
// rotation axis.
template <class T>
vnl_quaternion<T>::vnl_quaternion (T tx, T ty, T tz, T rea)
{
this->operator[](0) = tx; // 3 first elements are
this->operator[](1) = ty; // imaginary parts
this->operator[](2) = tz;
this->operator[](3) = rea; // last element is real part
}
//: Creates a quaternion from the normalized axis direction and the angle of rotation in radians.
template <class T>
vnl_quaternion<T>::vnl_quaternion(vnl_vector_fixed<T,3> const& Axis, double Angle)
{
double a = Angle * 0.5; // half angle
T s = T(vcl_sin(a));
for (int i = 0; i < 3; i++) // imaginary vector is sine of
this->operator[](i) = T(s * Axis(i));// half angle multiplied with axis
this->operator[](3) = T(vcl_cos(a)); // real part is cosine of half angle
}
//: Creates a quaternion from a vector.
// 3D vector is converted into an imaginary quaternion with same
// (x, y, z) components.
template <class T>
vnl_quaternion<T>::vnl_quaternion(vnl_vector_fixed<T,3> const& vec)
{
for (unsigned int i = 0; i < 3; ++i)
this->operator[](i) = vec(i);
this->operator[](3) = T(0);
}
//: Creates a quaternion from a vector.
// 4D vector is assumed to be a 4-element quaternion, to
// provide casting between vector and quaternion
template <class T>
vnl_quaternion<T>::vnl_quaternion(vnl_vector_fixed<T,4> const& vec)
{
for (unsigned int i = 0; i < 4; ++i) // 1-1 layout between vector & quaternion
this->operator[](i) = vec[i];
}
//: Creates a quaternion from a rotation matrix.
// Its orthonormal basis vectors are the matrix rows.
// NOTE: this matrix *must* have determinant +1; this is not verified!
// WARNING: Takes the transpose of the rotation matrix, i.e.,
// the orthonormal vectors must be the rows of the matrix, not the columns.
template <class T>
vnl_quaternion<T>::vnl_quaternion(vnl_matrix_fixed<T,3,3> const& rot)
{
double d0 = rot(0,0), d1 = rot(1,1), d2 = rot(2,2);
double xx = 1.0 + d0 - d1 - d2; // from the diagonal of the rotation
double yy = 1.0 - d0 + d1 - d2; // matrix, find the terms in
double zz = 1.0 - d0 - d1 + d2; // each Quaternion component
double rr = 1.0 + d0 + d1 + d2; // (using the fact that rr+xx+yy+zz=4)
double max = rr; // find the maximum of all terms;
if (xx > max) max = xx; // dividing by the maximum makes
if (yy > max) max = yy; // the computations more stable
if (zz > max) max = zz; // and avoid division by zero
if (rr == max) {
T r4 = T(vcl_sqrt(rr)*2);
this->r() = r4 / 4;
r4 = T(1) / r4;
this->x() = (rot(1,2) - rot(2,1)) * r4; // find other components from
this->y() = (rot(2,0) - rot(0,2)) * r4; // off diagonal terms of
this->z() = (rot(0,1) - rot(1,0)) * r4; // rotation matrix.
}
else if (xx == max) {
T x4 = T(vcl_sqrt(xx)*2);
this->x() = x4 / 4;
x4 = T(1) / x4;
this->y() = (rot(0,1) + rot(1,0)) * x4;
this->z() = (rot(0,2) + rot(2,0)) * x4;
this->r() = (rot(1,2) - rot(2,1)) * x4;
}
else if (yy == max) {
T y4 = T(vcl_sqrt(yy)*2);
this->y() = y4 / 4;
y4 = T(1) / y4;
this->x() = (rot(0,1) + rot(1,0)) * y4;
this->z() = (rot(1,2) + rot(2,1)) * y4;
this->r() = (rot(2,0) - rot(0,2)) * y4;
}
else {
T z4 = T(vcl_sqrt(zz)*2);
this->z() = z4 / 4;
z4 = T(1) / z4;
this->x() = (rot(0,2) + rot(2,0)) * z4;
this->y() = (rot(1,2) + rot(2,1)) * z4;
this->r() = (rot(0,1) - rot(1,0)) * z4;
}
}
//: Construct quaternion from Euler Angles
// That is a rotation about the X axis, followed by Y, followed by
// the Z axis, using a fixed reference frame.
template <class T>
vnl_quaternion<T>::vnl_quaternion(T theta_X, T theta_Y, T theta_Z)
{
vnl_quaternion<T> Rx(static_cast<T>(vcl_sin(double(theta_X)*0.5)), 0, 0, static_cast<T>(vcl_cos(double(theta_X)*0.5)));
vnl_quaternion<T> Ry(0, static_cast<T>(vcl_sin(double(theta_Y)*0.5)), 0, static_cast<T>(vcl_cos(double(theta_Y)*0.5)));
vnl_quaternion<T> Rz(0, 0, static_cast<T>(vcl_sin(double(theta_Z)*0.5)), static_cast<T>(vcl_cos(double(theta_Z)*0.5)));
*this = Rz * Ry * Rx;
}
//: Rotation representation in Euler angles.
// The angles returned will be [theta_X,theta_Y,theta_Z]
// where the final rotation is found be first applying theta_X radians
// about the X axis, then theta_Y about the Y-axis, etc.
// The axes stay in a fixed reference frame.
template <class T>
vnl_vector_fixed<T,3> vnl_quaternion<T>::rotation_euler_angles() const
{
vnl_vector_fixed<T,3> angles;
vnl_matrix_fixed<T,4,4> rotM = rotation_matrix_transpose_4();
T xy = T(vcl_sqrt(double(vnl_math_sqr(rotM(0,0)) + vnl_math_sqr(rotM(0,1)))));
if (xy > vcl_numeric_limits<T>::epsilon() * T(8))
{
angles(0) = T(vcl_atan2(double(rotM(1,2)), double(rotM(2,2))));
angles(1) = T(vcl_atan2(double(-rotM(0,2)), double(xy)));
angles(2) = T(vcl_atan2(double(rotM(0,1)), double(rotM(0,0))));
}
else
{
angles(0) = T(vcl_atan2(double(-rotM(2,1)), double(rotM(1,1))));
angles(1) = T(vcl_atan2(double(-rotM(0,2)), double(xy)));
angles(2) = T(0);
}
return angles;
}
//: Queries the rotation angle of the quaternion.
// Returned angle lies in [0, 2*pi]
template <class T>
double vnl_quaternion<T>::angle() const
{
return 2 * vcl_atan2(double(this->imaginary().magnitude()),
double(this->real())); // angle is always positive
}
//: Queries the direction of the rotation axis of the quaternion.
// A null quaternion will return zero for angle and k direction for axis.
template <class T>
vnl_vector_fixed<T,3> vnl_quaternion<T>::axis() const
{
vnl_vector_fixed<T,3> direc = this->imaginary(); // direc parallel to imag. part
T mag = direc.magnitude();
if (mag == T(0)) {
vcl_cout << "Axis not well defined for zero Quaternion. Using (0,0,1) instead.\n";
direc[2] = T(1); // or signal exception here.
}
else
direc /= mag; // normalize direction vector
return direc;
}
//: Converts a normalized quaternion into a square rotation matrix with dimension dim.
// This is the reverse counterpart of constructing a quaternion from a transformation matrix.
// WARNING this is inconsistent with the quaternion docs and q.rotate()
template <class T>
vnl_matrix_fixed<T,3,3> vnl_quaternion<T>::rotation_matrix_transpose() const
{
T x2 = x() * x(), xy = x() * y(), rx = r() * x(),
y2 = y() * y(), yz = y() * z(), ry = r() * y(),
z2 = z() * z(), zx = z() * x(), rz = r() * z(),
r2 = r() * r();
vnl_matrix_fixed<T,3,3> rot;
rot(0,0) = r2 + x2 - y2 - z2; // fill diagonal terms
rot(1,1) = r2 - x2 + y2 - z2;
rot(2,2) = r2 - x2 - y2 + z2;
rot(0,1) = 2 * (xy + rz); // fill off diagonal terms
rot(0,2) = 2 * (zx - ry);
rot(1,2) = 2 * (yz + rx);
rot(1,0) = 2 * (xy - rz);
rot(2,0) = 2 * (zx + ry);
rot(2,1) = 2 * (yz - rx);
return rot;
}
template <class T>
vnl_matrix_fixed<T,4,4> vnl_quaternion<T>::rotation_matrix_transpose_4() const
{
vnl_matrix_fixed<T,4,4> rot;
return rot.set_identity().update(this->rotation_matrix_transpose().as_ref());
}
//: Returns the conjugate of given quaternion, having same real and opposite imaginary parts.
template <class T>
vnl_quaternion<T> vnl_quaternion<T>::conjugate() const
{
return vnl_quaternion<T> (-x(), -y(), -z(), r());
}
//: Returns the inverse of given quaternion.
// For unit quaternion representing rotation, the inverse is the
// same as the conjugate.
template <class T>
vnl_quaternion<T> vnl_quaternion<T>::inverse() const
{
vnl_quaternion<T> inv = this->conjugate();
inv /= vnl_c_vector<T>::dot_product(this->data_, this->data_, 4);
return inv;
}
//: Returns the product of two quaternions.
// Multiplication of two quaternions is not symmetric and has
// fewer operations than multiplication of orthonormal
// matrices. If object is rotated by r1, then by r2, then
// the composed rotation (r2 o r1) is represented by the
// quaternion (q2 * q1), or by the matrix (m1 * m2). Note
// that matrix composition is reversed because matrices
// and vectors are represented row-wise.
template <class T>
vnl_quaternion<T> vnl_quaternion<T>::operator* (vnl_quaternion<T> const& rhs) const
{
T r1 = this->real(); // real and img parts of args
T r2 = rhs.real();
vnl_vector_fixed<T,3> i1 = this->imaginary();
vnl_vector_fixed<T,3> i2 = rhs.imaginary();
T real_v = (r1 * r2) - ::dot_product(i1, i2); // real&img of product q1*q2
vnl_vector_fixed<T,3> img = vnl_cross_3d(i1, i2);
img += (i2 * r1) + (i1 * r2);
return vnl_quaternion<T>(img[0], img[1], img[2], real_v);
}
//: Rotates 3D vector v with source quaternion and stores the rotated vector back into v.
// For speed and greater accuracy, first convert quaternion into an orthonormal
// matrix, then use matrix multiplication to rotate many vectors.
template <class T>
vnl_vector_fixed<T,3> vnl_quaternion<T>::rotate(vnl_vector_fixed<T,3> const& v) const
{
T rea = this->real();
vnl_vector_fixed<T,3> i = this->imaginary();
vnl_vector_fixed<T,3> i_x_v(vnl_cross_3d(i, v));
return v + i_x_v * T(2*rea) - vnl_cross_3d(i_x_v, i) * T(2);
}
#undef VNL_QUATERNION_INSTANTIATE
#define VNL_QUATERNION_INSTANTIATE(T) \
template class vnl_quaternion<T >;\
VCL_INSTANTIATE_INLINE(vcl_ostream& operator<< (vcl_ostream&, vnl_quaternion<T > const&))
#endif // vnl_quaternion_txx_
|