This file is indexed.

/usr/include/ITK-4.5/vnl/vnl_sample.h is in libinsighttoolkit4-dev 4.5.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
// This is core/vnl/vnl_sample.h
#ifndef vnl_sample_h_
#define vnl_sample_h_
#ifdef VCL_NEEDS_PRAGMA_INTERFACE
#pragma interface
#endif
//:
//  \file
//  \brief easy ways to sample from various probability distributions
// \author fsm
// \verbatim
//  Modifications
//   2005-01-01 Peter Vanroose - use simple (but robust) rng when no DRAND48
//   2007-03-26 Peter Vanroose - avoid returning log(0.0) by switching params
//   2010-09-12 Peter Vanroose - added implementation for binomial sampling
//   2010-09-12 Peter Vanroose - added Bernoulli (unfair coin toss) sampling
// \endverbatim

//: re-seed the random number generator.
void vnl_sample_reseed();

//: re-seed the random number generator given a seed.
void vnl_sample_reseed(int seed);

//: return a random number uniformly drawn on [a, b)
double vnl_sample_uniform(double a, double b);

//: two independent samples from a standard normal distribution.
void vnl_sample_normal_2(double *x, double *y);

//: Normal distribution with given mean and standard deviation
double vnl_sample_normal(double mean, double sigma);

//: Return random k, where P(X = k) = [kth term in binomial expansion of (q + (1-q))^n].
// The returned value will lie between 0 and n (but will be -1 when input is nonsense).
int vnl_sample_binomial(int n, double q);

//: Bernoulli distribution ("coin toss").
// The returned value will be 0 (with probability q) or 1 (with probability 1-q).
// For a "fair" coin toss, use q=0.5.
// When q does not lie between 0 and 1, the value -1 is returned.
int vnl_sample_bernoulli(double q);

// ----------------------------------------

//: handy function to fill a range of values.
template <class I>
inline void vnl_sample_uniform(I begin, I end, double a, double b)
{
  for (I p=begin; p!=end; ++p)
    (*p) = vnl_sample_uniform(a, b);
}

//: handy function to fill a range of values.
template <class I>
inline void vnl_sample_normal(I begin, I end, double mean, double sigma)
{
  for (I p=begin; p!=end; ++p)
    (*p) = vnl_sample_normal(mean, sigma);
}

//: handy function to fill a range of values.
template <class I>
inline void vnl_sample_binomial(I begin, I end, int n, double q)
{
  for (I p=begin; p!=end; ++p)
    (*p) = vnl_sample_binomial(n, q);
}

//: handy function to fill a range of values.
template <class I>
inline void vnl_sample_bernoulli(I begin, I end, double q)
{
  for (I p=begin; p!=end; ++p)
    (*p) = vnl_sample_bernoulli(q);
}

//: handy function to fill a range of values.
template <class I, class T>
inline void vnl_sample_uniform(I begin, I end, double a, double b, T /*dummy*/)
{
  for (I p=begin; p!=end; ++p)
    (*p) = T(vnl_sample_uniform(a, b));
}

//: handy function to fill a range of values.
template <class I, class T>
inline void vnl_sample_normal(I begin, I end, double mean, double sigma, T /*dummy*/)
{
  for (I p=begin; p!=end; ++p)
    (*p) = T(vnl_sample_normal(mean, sigma));
}

#endif // vnl_sample_h_