/usr/include/itpp/base/bessel.h is in libitpp-dev 4.3.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 | /*!
* \file
* \brief Definitions of Bessel functions
* \author Tony Ottosson
*
* -------------------------------------------------------------------------
*
* Copyright (C) 1995-2010 (see AUTHORS file for a list of contributors)
*
* This file is part of IT++ - a C++ library of mathematical, signal
* processing, speech processing, and communications classes and functions.
*
* IT++ is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* IT++ is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along
* with IT++. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef BESSEL_H
#define BESSEL_H
#include <itpp/base/vec.h>
#include <itpp/itexports.h>
namespace itpp
{
/*! \addtogroup besselfunctions
*/
/*!
\ingroup besselfunctions
\brief Bessel function of first kind of order \a nu for \a nu integer
The bessel function of first kind is defined as:
\f[
J_{\nu}(x) = \sum_{k=0}^{\infty} \frac{ (-1)^{k} }{k! \Gamma(\nu+k+1) } \left(\frac{x}{2}\right)^{\nu+2k}
\f]
where \f$\nu\f$ is the order and \f$ 0 < x < \infty \f$.
*/
ITPP_EXPORT double besselj(int nu, double x);
/*!
\ingroup besselfunctions
\brief Bessel function of first kind of order \a nu for \a nu integer
*/
ITPP_EXPORT vec besselj(int nu, const vec &x);
/*!
\ingroup besselfunctions
\brief Bessel function of first kind of order \a nu. \a nu is real.
*/
ITPP_EXPORT double besselj(double nu, double x);
/*!
\ingroup besselfunctions
\brief Bessel function of first kind of order \a nu. \a nu is real.
*/
ITPP_EXPORT vec besselj(double nu, const vec &x);
/*!
\ingroup besselfunctions
\brief Bessel function of second kind of order \a nu. \a nu is integer.
The Bessel function of second kind is defined as:
\f[
Y_{\nu}(x) = \frac{J_{\nu}(x) \cos(\nu\pi) - J_{-\nu}(x)}{\sin(\nu\pi)}
\f]
where \f$\nu\f$ is the order and \f$ 0 < x < \infty \f$.
*/
ITPP_EXPORT double bessely(int nu, double x);
/*!
\ingroup besselfunctions
\brief Bessel function of second kind of order \a nu. \a nu is integer.
*/
ITPP_EXPORT vec bessely(int nu, const vec &x);
/*!
\ingroup besselfunctions
\brief Bessel function of second kind of order \a nu. \a nu is real.
*/
ITPP_EXPORT double bessely(double nu, double x);
/*!
\ingroup besselfunctions
\brief Bessel function of second kind of order \a nu. \a nu is real.
*/
ITPP_EXPORT vec bessely(double nu, const vec &x);
/*!
\ingroup besselfunctions
\brief Modified Bessel function of first kind of order \a nu. \a nu is \a double. \a x is \a double.
The Modified Bessel function of first kind is defined as:
\f[
I_{\nu}(x) = i^{-\nu} J_{\nu}(ix)
\f]
where \f$\nu\f$ is the order and \f$ 0 < x < \infty \f$.
*/
ITPP_EXPORT double besseli(double nu, double x);
/*!
\ingroup besselfunctions
\brief Modified Bessel function of first kind of order \a nu. \a nu is \a double. \a x is \a double.
*/
ITPP_EXPORT vec besseli(double nu, const vec &x);
/*!
\ingroup besselfunctions
\brief Modified Bessel function of second kind of order \a nu. \a nu is double. \a x is double.
The Modified Bessel function of second kind is defined as:
\f[
K_{\nu}(x) = \frac{\pi}{2} i^{\nu+1} [J_{\nu}(ix) + i Y_{\nu}(ix)]
\f]
where \f$\nu\f$ is the order and \f$ 0 < x < \infty \f$.
*/
ITPP_EXPORT double besselk(int nu, double x);
/*!
\ingroup besselfunctions
\brief Modified Bessel function of second kind of order \a nu. \a nu is double. \a x is double.
*/
ITPP_EXPORT vec besselk(int nu, const vec &x);
} //namespace itpp
#endif // #ifndef BESSEL_H
|