/usr/include/itpp/base/gf2mat.h is in libitpp-dev 4.3.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 | /*!
* \file
* \brief Definition of a class for algebra on GF(2) (binary) matrices
* \author Erik G. Larsson and Adam Piatyszek
*
* -------------------------------------------------------------------------
*
* Copyright (C) 1995-2010 (see AUTHORS file for a list of contributors)
*
* This file is part of IT++ - a C++ library of mathematical, signal
* processing, speech processing, and communications classes and functions.
*
* IT++ is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* IT++ is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along
* with IT++. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*
* Two representations are offered: GF2mat_sparse for sparse GF(2)
* matrices and GF2mat for dense GF(2) matrices. Conversions between
* dense and sparse GF(2) are also possible.
*
* Binary vectors are represented either via the bvec class (memory
* typically is not an issue here) or as n*1 (or 1*n) GF(2) matrix.
*
* Note that the \c bmat class also provides some functionality for
* matrix algebra over GF(2) but this class is based on \c Mat<> which
* has a fundamentally different addressing mechanism and which is
* much less memory efficient (\c Mat<> uses one byte memory minimum
* per element).
*/
#ifndef GF2MAT_H
#define GF2MAT_H
#include <itpp/base/vec.h>
#include <itpp/base/mat.h>
#include <itpp/base/svec.h>
#include <itpp/base/smat.h>
#include <itpp/base/itfile.h>
#include <itpp/itexports.h>
namespace itpp
{
//! \cond
#if (defined(_MSC_VER) && defined(ITPP_SHARED_LIB))
//MSVC needs to explicitely instantiate required templates while building the
//shared library. Also, these definitions are marked as imported when library is
//linked with user's code.
template class ITPP_EXPORT Sparse_Mat<bin>;
template class ITPP_EXPORT Sparse_Vec<bin>;
template class ITPP_EXPORT Mat<unsigned char>;
#endif
//! \endcond
// ----------------------------------------------------------------------
// Sparse GF(2) matrix class
// ----------------------------------------------------------------------
//! Sparse GF(2) vector
typedef Sparse_Vec<bin> GF2vec_sparse;
//! Sparse GF(2) matrix
typedef Sparse_Mat<bin> GF2mat_sparse;
// ----------------------------------------------------------------------
// Alist parameterization of sparse GF(2) matrix class
// ----------------------------------------------------------------------
/*!
\relatesalso GF2mat_sparse
\brief Parameterized "alist" representation of sparse GF(2) matrix
\author Adam Piatyszek and Erik G. Larsson
This class is used to provide a parameterized representation of a \c
GF2mat_sparse class. The format is compatible with the "alist" format
defined by David MacKay, Matthew Davey and John Lafferty:
- http://www.inference.phy.cam.ac.uk/mackay/codes/alist.html
For examples of "alist" representation visit David MacKay's Encyclopedia
of Sparse Graph Codes:
- http://www.inference.phy.cam.ac.uk/mackay/codes/data.html
*/
class ITPP_EXPORT GF2mat_sparse_alist
{
public:
//! Default constructor
GF2mat_sparse_alist() : data_ok(false) {}
//! Constructor, which reads alist data from a file named \c fname
GF2mat_sparse_alist(const std::string &fname);
//! Read alist data from a file named \c fname
void read(const std::string &fname);
//! Write alist data to a file named \c fname
void write(const std::string &fname) const;
/*!
\brief Convert "alist" representation to \c GF2mat_sparse
\param transpose Indicates whether a matrix should be transposed
during the conversion process
*/
GF2mat_sparse to_sparse(bool transpose = false) const;
/*!
\brief Import "alist" representation from \c GF2mat_sparse
\param mat Matrix to import
\param transpose Indicates whether a matrix should be transposed
during the conversion process
*/
void from_sparse(const GF2mat_sparse &mat, bool transpose = false);
protected:
//! Flag indicating that "alist" matrix data are properly set
bool data_ok;
//! Size of the matrix: \c M rows x \c N columns
int M;
//! Size of the matrix: \c M rows x \c N columns
int N;
//! List of integer coordinates in the m direction with non-zero entries
imat mlist;
//! List of integer coordinates in the n direction with non-zero entries
imat nlist;
//! Weight of each row m
ivec num_mlist;
//! Weight of each column n
ivec num_nlist;
//! Maximum weight of rows
int max_num_m;
//! Maximum weight of columns
int max_num_n;
};
// ----------------------------------------------------------------------
// Dense GF(2) matrix class
// ----------------------------------------------------------------------
/*!
\relatesalso bmat
\brief Class for dense GF(2) matrices
\author Erik G. Larsson
This class can be used as an alternative to \c bmat to represent
GF(2) matrices. It extends the functionality of \c bmat in two ways:
- \c GF2mat makes more efficient use of computer memory than \c bmat
(one bit in the matrix requires one bit of memory)
- \c GF2mat provides several functions for linear algebra and matrix
factorizations
See also \c GF2mat_sparse which offers an efficient representation
of sparse GF(2) matrices, and \c GF2mat_sparse_alist for a
parameterized representation of sparse GF(2) matrices.
*/
class ITPP_EXPORT GF2mat
{
public:
// ----------- Constructors -----------
//! Default constructor (gives an empty 1 x 1 matrix)
GF2mat();
//! Construct an empty (all-zero) m x n matrix
GF2mat(int m, int n);
//! Construct a dense GF(2) matrix from a sparse GF(2) matrix
GF2mat(const GF2mat_sparse &X);
/*! \brief Constructor, from subset of sparse GF(2) matrix
This constructor forms a dense GF(2) matrix from a subset (m1,n1)
to (m2,n2) of a sparse GF(2) matrix */
GF2mat(const GF2mat_sparse &X, int m1, int n1, int m2, int n2);
/*! \brief Constructor, from subset of sparse GF(2) matrix
This constructor forms a dense GF(2) matrix from a subset of
columns in sparse GF(2) matrix
\param X matrix to copy from
\param columns subset of columns to copy
*/
GF2mat(const GF2mat_sparse &X, const ivec &columns);
/*!
\brief Create a dense GF(2) matrix from a single vector.
\param x The input vector
\param is_column A parameter that indicates whether the result should
be a row vector (false), or a column vector (true - default)
*/
GF2mat(const bvec &x, bool is_column = true);
//! Create a dense GF(2) matrix from a bmat
GF2mat(const bmat &X);
//! Set size of GF(2) matrix. If copy = true, keep data before resizing.
void set_size(int m, int n, bool copy = false);
//! Create a sparse GF(2) matrix from a dense GF(2) matrix
GF2mat_sparse sparsify() const;
//! Create a bvec from a GF(2) matrix (must have one column or one row)
bvec bvecify() const;
// ----------- Elementwise manipulation and simple functions -------------
//! Getting element
inline bin get(int i, int j) const;
//! Getting element
inline bin operator()(int i, int j) const { return get(i, j); };
//! Set element i,j to s (0 or 1)
inline void set(int i, int j, bin s);
//! Add s (0 or 1) to element (i,j)
inline void addto_element(int i, int j, bin s);
//! Set column j to a binary vector x
void set_col(int j, bvec x);
//! Set row i to a binary vector x
void set_row(int i, bvec x);
//! Check whether the matrix is identical to zero
bool is_zero() const;
//! Swap rows i and j
void swap_rows(int i, int j);
//! Swap columns i and j
void swap_cols(int i, int j);
/*! \brief Multiply from left with permutation matrix (permute rows).
\param perm Permutation vector
\param I Parameter that determines permutation.
I=0: apply permutation, I=1: apply inverse permutation
*/
void permute_rows(ivec &perm, bool I);
/*! \brief Multiply a matrix from right with a permutation matrix
(i.e., permute the columns).
\param perm Permutation vector
\param I Parameter that determines permutation.
I=0: apply permutation, I=1: apply inverse permutation
*/
void permute_cols(ivec &perm, bool I);
//! Transpose
GF2mat transpose() const;
//! Submatrix from (m1,n1) to (m2,n2)
GF2mat get_submatrix(int m1, int n1, int m2, int n2) const;
//! Concatenate horizontally (append X on the right side of matrix)
GF2mat concatenate_horizontal(const GF2mat &X) const;
//! Concatenate vertically (append X underneath)
GF2mat concatenate_vertical(const GF2mat &X) const;
//! Get row
bvec get_row(int i) const;
//! Get column
bvec get_col(int j) const;
//! Compute the matrix density (fraction of elements equal to "1")
double density() const;
//! Get number of rows
int rows() const { return nrows; }
//! Get number of columns
int cols() const { return ncols; }
/*! \brief Add (or equivalently, subtract) rows
This function updates row i according to row_i = row_i+row_j
\param i Row to add to. This row will be modified
\param j Row to add. This row will <b>not</b> be modified.
*/
void add_rows(int i, int j);
// ---------- Linear algebra --------------
/*! \brief Inversion.
The matrix must be invertible, otherwise the
function will terminate with an error.
*/
GF2mat inverse() const;
//! Returns the number of linearly independent rows
int row_rank() const;
/*! \brief TXP factorization.
Given X, compute a factorization of the form U=TXP, where U is
upper triangular, T is square and invertible, and P is a
permutation matrix. This is basically an "LU"-factorization,
but not called so here because T is not necessarily lower
triangular. The matrix X may have any dimension. The
permutation matrix P is represented as a permutation vector.
The function returns the row rank of X. (If X is full row rank,
then the number of rows is returned.)
The function uses Gaussian elimination combined with
permutations. The computational complexity is O(m*m*n) for an
m*n matrix.
*/
int T_fact(GF2mat &T, GF2mat &U, ivec &P) const;
/*! \brief TXP factorization update, when bit is flipped.
Update upper triangular factor U in the TXP-factorization (U=TXP)
when the bit at position (r,c) is changed (0->1 or 1->0). The
purpose of this function is to avoid re-running a complete
T-factorization when a single bit is changed. The function assumes
that T, U, and P already exist and that U=TXP before the function
is called. The function also assumes that the rank provided is
correct. The function updates T, U and P these matrices. The
function returns the new rank of the matrix after the bitflip.
\note T, U, P and the rank value supplied to the function must be
correct one. This is not checked by the function (for reasons of
efficiency).
The function works by performing permutations to bring the matrix
to a form where the Gaussian eliminated can be restarted from the
point (rank-1,rank-1). The function is very fast for matrices with
close to full rank but it is generally slower for non-full rank
matrices.
*/
int T_fact_update_bitflip(GF2mat &T, GF2mat &U,
ivec &P, int rank, int r, int c) const;
/*! \brief TXP factorization update, when column is added
Update upper triangular factor U in the T-factorization (U=TXP)
when a column (newcol) is appended at the right side of the
matrix. The purpose of this function is to avoid re-running a
complete T-factorization when a column is added. The function ONLY
adds the column if it improves the rank of the matrix (nothing is
done otherwise). The function returns "true" if the column was
added, and "false" otherwise.
\note This function does not actually add the column newcol to the
GF2 matrix. It only checks whether doing so would increase the
rank, and if this is the case, it updates the T-factorization. A
typical calling sequence would be
\code
bool rank_will_improve = X.T_fact_update_addcol(T,U,perm,c);
if (rank_will_improve) { X = X.concatenate_horizontal(c); }
\endcode
The complexity is O(m^2) for an m*n matrix.
*/
bool T_fact_update_addcol(GF2mat &T, GF2mat &U,
ivec &P, bvec newcol) const;
// ----- Operators -----------
//! Assignment operator
void operator=(const GF2mat &X);
//! Check if equal
bool operator==(const GF2mat &X) const;
// ----- Friends ------
//! Multiplication operator
friend ITPP_EXPORT GF2mat operator*(const GF2mat &X, const GF2mat &Y);
//! Multiplication operator with binary vector
friend ITPP_EXPORT bvec operator*(const GF2mat &X, const bvec &y);
/*! \brief Addition operator
Subtraction is not implemented because it is
equivalent to addition. */
friend ITPP_EXPORT GF2mat operator+(const GF2mat &X, const GF2mat &Y);
//! Output stream operator (plain text)
friend ITPP_EXPORT std::ostream &operator<<(std::ostream &os, const GF2mat &X);
//! Write the matrix to file
friend ITPP_EXPORT it_file &operator<<(it_file &f, const GF2mat &X);
//! Read the matrix from file
friend ITPP_EXPORT it_ifile &operator>>(it_ifile &f, GF2mat &X);
//!Multiplication X*Y' where X and Y are GF(2) matrices
friend ITPP_EXPORT GF2mat mult_trans(const GF2mat &X, const GF2mat &Y);
private:
int nrows, ncols; // number of rows and columns of matrix
int nwords; // number of bytes used
Mat<unsigned char> data; // data structure
// This value is used to perform division by bit shift and is equal to
// log2(8)
static const unsigned char shift_divisor = 3;
// This value is used as a mask when computing the bit position of the
// division remainder
static const unsigned char rem_mask = (1 << shift_divisor) - 1;
};
// ----------------------------------------------------------------------
// GF2mat related functions
// ----------------------------------------------------------------------
/*!
/relatesalso GF2mat
/brief Write GF(2) matrix to file.
*/
ITPP_EXPORT it_file &operator<<(it_file &f, const GF2mat &X);
/*!
/relatesalso GF2mat
/brief Read GF(2) matrix from file.
*/
ITPP_EXPORT it_ifile &operator>>(it_ifile &f, GF2mat &X);
/*!
\relatesalso GF2mat
\brief GF(2) matrix multiplication
*/
ITPP_EXPORT GF2mat operator*(const GF2mat &X, const GF2mat &Y);
/*!
\relatesalso GF2mat
\brief GF(2) matrix multiplication with "regular" binary vector
*/
ITPP_EXPORT bvec operator*(const GF2mat &X, const bvec &y);
/*!
\relatesalso GF2mat
\brief GF(2) matrix addition
*/
ITPP_EXPORT GF2mat operator+(const GF2mat &X, const GF2mat &Y);
/*!
\relatesalso GF2mat
\brief Output stream (plain text) operator for dense GF(2) matrices
*/
ITPP_EXPORT std::ostream &operator<<(std::ostream &os, const GF2mat &X);
/*!
\relatesalso GF2mat
\brief GF(2) Identity matrix
*/
ITPP_EXPORT GF2mat gf2dense_eye(int m);
/*!
\relatesalso GF2mat
\brief Multiplication X*Y' where X and Y are GF(2) matrices
*/
ITPP_EXPORT GF2mat mult_trans(const GF2mat &X, const GF2mat &Y);
// ----------------------------------------------------------------------
// Inline implementations
// ----------------------------------------------------------------------
inline void GF2mat::addto_element(int i, int j, bin s)
{
it_assert_debug(i >= 0 && i < nrows, "GF2mat::addto_element()");
it_assert_debug(j >= 0 && j < ncols, "GF2mat::addto_element()");
if (s == 1)
data(i, (j >> shift_divisor)) ^= (1 << (j & rem_mask));
}
inline bin GF2mat::get(int i, int j) const
{
it_assert_debug(i >= 0 && i < nrows, "GF2mat::get_element()");
it_assert_debug(j >= 0 && j < ncols, "GF2mat::get_element()");
return (data(i, (j >> shift_divisor)) >> (j & rem_mask)) & 1;
}
inline void GF2mat::set(int i, int j, bin s)
{
it_assert_debug(i >= 0 && i < nrows, "GF2mat::set_element()");
it_assert_debug(j >= 0 && j < ncols, "GF2mat::set_element()");
if (s == 1) // set bit to one
data(i, (j >> shift_divisor)) |= (1 << (j & rem_mask));
else // set bit to zero
data(i, (j >> shift_divisor)) &= (~(1 << (j & rem_mask)));
}
} // namespace itpp
#endif // #ifndef GF2MAT_H
|