/usr/include/itpp/base/mat.h is in libitpp-dev 4.3.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 | /*!
* \file
* \brief Matrix Class Definitions
* \author Tony Ottosson, Tobias Ringstrom, Adam Piatyszek and Conrad Sanderson
*
* -------------------------------------------------------------------------
*
* Copyright (C) 1995-2010 (see AUTHORS file for a list of contributors)
*
* This file is part of IT++ - a C++ library of mathematical, signal
* processing, speech processing, and communications classes and functions.
*
* IT++ is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* IT++ is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along
* with IT++. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef MAT_H
#define MAT_H
#include <itpp/base/itassert.h>
#include <itpp/base/math/misc.h>
#include <itpp/base/factory.h>
#include <itpp/itexports.h>
namespace itpp
{
// Declaration of Vec
template<class Num_T> class Vec;
// Declaration of Mat
template<class Num_T> class Mat;
// Declaration of bin
class bin;
//! Horizontal concatenation of two matrices
template<class Num_T>
Mat<Num_T> concat_horizontal(const Mat<Num_T> &m1, const Mat<Num_T> &m2);
//! Vertical concatenation of two matrices
template<class Num_T>
Mat<Num_T> concat_vertical(const Mat<Num_T> &m1, const Mat<Num_T> &m2);
//! Addition of two matrices
template<class Num_T>
Mat<Num_T> operator+(const Mat<Num_T> &m1, const Mat<Num_T> &m2);
//! Addition of a matrix and a scalar
template<class Num_T>
Mat<Num_T> operator+(const Mat<Num_T> &m, Num_T t);
//! Addition of a scalar and a matrix
template<class Num_T>
Mat<Num_T> operator+(Num_T t, const Mat<Num_T> &m);
//! Subtraction of two matrices
template<class Num_T>
Mat<Num_T> operator-(const Mat<Num_T> &m1, const Mat<Num_T> &m2);
//! Subtraction of matrix and scalar
template<class Num_T>
Mat<Num_T> operator-(const Mat<Num_T> &m, Num_T t);
//! Subtraction of scalar and matrix
template<class Num_T>
Mat<Num_T> operator-(Num_T t, const Mat<Num_T> &m);
//! Negation of matrix
template<class Num_T>
Mat<Num_T> operator-(const Mat<Num_T> &m);
//! Multiplication of two matrices
template<class Num_T>
Mat<Num_T> operator*(const Mat<Num_T> &m1, const Mat<Num_T> &m2);
//! Multiplication of matrix and vector
template<class Num_T>
Vec<Num_T> operator*(const Mat<Num_T> &m, const Vec<Num_T> &v);
//! Multiplication of matrix and scalar
template<class Num_T>
Mat<Num_T> operator*(const Mat<Num_T> &m, Num_T t);
//! Multiplication of scalar and matrix
template<class Num_T>
Mat<Num_T> operator*(Num_T t, const Mat<Num_T> &m);
//! Element wise multiplication of two matrices
template<class Num_T>
Mat<Num_T> elem_mult(const Mat<Num_T> &m1, const Mat<Num_T> &m2);
//! Element wise multiplication of two matrices, storing the result in matrix \c out
template<class Num_T>
void elem_mult_out(const Mat<Num_T> &m1, const Mat<Num_T> &m2,
Mat<Num_T> &out);
//! Element wise multiplication of three matrices, storing the result in matrix \c out
template<class Num_T>
void elem_mult_out(const Mat<Num_T> &m1, const Mat<Num_T> &m2,
const Mat<Num_T> &m3, Mat<Num_T> &out);
//! Element wise multiplication of four matrices, storing the result in matrix \c out
template<class Num_T>
void elem_mult_out(const Mat<Num_T> &m1, const Mat<Num_T> &m2,
const Mat<Num_T> &m3, const Mat<Num_T> &m4,
Mat<Num_T> &out);
//! In-place element wise multiplication of two matrices. Fast version of B = elem_mult(A, B).
template<class Num_T>
void elem_mult_inplace(const Mat<Num_T> &m1, Mat<Num_T> &m2);
//! Element wise multiplication of two matrices, followed by summation of the resultant elements. Fast version of sumsum(elem_mult(A, B)).
template<class Num_T>
Num_T elem_mult_sum(const Mat<Num_T> &m1, const Mat<Num_T> &m2);
//! Element-wise division by a scalar
template<class Num_T>
Mat<Num_T> operator/(const Mat<Num_T> &m, Num_T t);
//! Element-wise division (\c t is the dividend, elements of \c m are divisors)
template<class Num_T>
Mat<Num_T> operator/(Num_T t, const Mat<Num_T> &m);
//! Element wise division of two matrices
template<class Num_T>
Mat<Num_T> elem_div(const Mat<Num_T> &m1, const Mat<Num_T> &m2);
//! Element wise division of two matrices, storing the result in matrix \c out
template<class Num_T>
void elem_div_out(const Mat<Num_T> &m1, const Mat<Num_T> &m2,
Mat<Num_T> &out);
//! Element wise division of two matrices, followed by summation of the resultant elements. Fast version of sumsum(elem_div(A, B)).
template<class Num_T>
Num_T elem_div_sum(const Mat<Num_T> &m1, const Mat<Num_T> &m2);
// -------------------------------------------------------------------------------------
// Declaration of Mat
// -------------------------------------------------------------------------------------
/*!
\ingroup arr_vec_mat
\brief Matrix Class (Templated)
\author Tony Ottosson, Tobias Ringstrom, Adam Piatyszek and Conrad Sanderson
Matrices can be of arbitrarily types, but conversions and functions are
prepared for \c bin, \c short, \c int, \c double, and \c complex<double>
vectors and these are predefined as: \c bmat, \c smat, \c imat, \c mat,
and \c cmat. \c double and \c complex<double> are usually \c double and
\c complex<double> respectively. However, this can be changed when
compiling the it++ (see installation notes for more details). (Note: for
binary matrices, an alternative to the bmat class is \c GF2mat and
\c GF2mat_dense, which offer a more memory efficient representation and
additional functions for linear algebra.)
Examples:
Matrix Constructors:
When constructing a matrix without dimensions (memory) use
\code mat temp; \endcode
For construction of a matrix of a given size use
\code mat temp(rows, cols); \endcode
It is also possible to assign the constructed matrix the value and dimension
of another matrix by
\code vec temp(inmatrix); \endcode
If you have explicit values you would like to assign to the matrix it is
possible to do this using strings as:
\code
mat a("0 0.7;5 9.3"); // that is a = [0, 0.7; 5, 9.3]
mat a="0 0.7;5 9.3"; // the constructor are called implicitly
\endcode
It is also possible to change dimension by
\code temp.set_size(new_rows, new_cols, false); \endcode
where \c false is used to indicate that the old values in \c temp
is not copied. If you like to preserve the values use \c true.
There are a number of methods to access parts of a matrix. Examples are
\code
a(5,3); // Element number (5,3)
a(5,9,3,5); // Sub-matrix from rows 5, 6, 7, 8, 9 the columns 3, 4, and 5
a.get_row(10); // Row 10
a.get_col(10); // Column 10
\endcode
It is also possible to modify parts of a vector as e.g. in
\code
a.set_row(5, invector); // Set row 5 to \c invector
a.set_col(3, invector); // Set column 3 to \c invector
a.copy_col(1, 5); // Copy column 5 to column 1
a.swap_cols(1, 5); // Swap the contents of columns 1 and 5
\endcode
It is of course also possible to perform the common linear algebra
methods such as addition, subtraction, and matrix multiplication. Observe
though, that vectors are assumed to be column-vectors in operations with
matrices.
Most elementary functions such as sin(), cosh(), log(), abs(), ..., are
available as operations on the individual elements of the matrices. Please
see the individual functions for more details.
By default, the Mat elements are created using the default constructor for
the element type. This can be changed by specifying a suitable Factory in
the Mat constructor call; see Detailed Description for Factory.
*/
template<class Num_T>
class Mat
{
public:
//! The type of the matrix values
typedef Num_T value_type;
//! Default constructor. An element factory \c f can be specified
explicit Mat(const Factory &f = DEFAULT_FACTORY);
//! Create a matrix of size (rows, cols). An element factory \c f can be specified.
Mat(int rows, int cols, const Factory &f = DEFAULT_FACTORY);
//! Copy constructor
Mat(const Mat<Num_T> &m);
//! Constructor, similar to the copy constructor, but also takes an element factory \c f as argument
Mat(const Mat<Num_T> &m, const Factory &f);
//! Construct a matrix from a column vector \c v. An element factory \c f can be specified.
Mat(const Vec<Num_T> &v, const Factory &f = DEFAULT_FACTORY);
//! Set matrix equal to values in string \c str. An element factory \c f can be specified.
Mat(const std::string &str, const Factory &f = DEFAULT_FACTORY);
//! Set matrix equal to values in string \c str. An element factory \c f can be specified.
Mat(const char *str, const Factory &f = DEFAULT_FACTORY);
/*!
* \brief Constructor taking a C-array as input. An element factory \c f
* can be specified.
*
* By default the matrix is stored as a row-major matrix (i.e. listing
* elements in sequence beginning with the first column).
*/
Mat(const Num_T *c_array, int rows, int cols, bool row_major = true,
const Factory &f = DEFAULT_FACTORY);
//! Destructor
~Mat();
//! The number of columns
int cols() const { return no_cols; }
//! The number of rows
int rows() const { return no_rows; }
//! The number of elements
int size() const { return datasize; }
//! Set size of matrix. If copy = true then keep the data before resizing.
void set_size(int rows, int cols, bool copy = false);
//! Set matrix equal to the all zero matrix
void zeros();
//! Set matrix equal to the all zero matrix
void clear() { zeros(); }
//! Set matrix equal to the all one matrix
void ones();
//! Set matrix equal to values in the string \c str
void set(const std::string &str);
//! Set matrix equal to values in the string \c str
void set(const char *str);
//! Get element (r,c) from matrix
const Num_T &operator()(int r, int c) const;
//! Get element (r,c) from matrix
Num_T &operator()(int r, int c);
//! Get element \c i using linear addressing (by rows)
const Num_T &operator()(int i) const;
//! Get element \c i using linear addressing (by rows)
Num_T &operator()(int i);
//! Get element (r,c) from matrix
const Num_T &get(int r, int c) const;
//! Get element \c i using linear addressing (by rows)
const Num_T &get(int i) const;
//! Set element (r,c) of matrix
void set(int r, int c, Num_T t);
/*!
\brief Sub-matrix from row \c r1 to row \c r2 and columns \c c1 to \c c2.
Value -1 indicates the last row and column, respectively.
*/
Mat<Num_T> operator()(int r1, int r2, int c1, int c2) const;
/*!
\brief Sub-matrix from row \c r1 to row \c r2 and columns \c c1 to \c c2.
Value -1 indicates the last row and column, respectively.
*/
Mat<Num_T> get(int r1, int r2, int c1, int c2) const;
//! Get row \c r
Vec<Num_T> get_row(int r) const;
//! Get rows \c r1 through \c r2
Mat<Num_T> get_rows(int r1, int r2) const;
//! Get the rows specified by \c indexlist
Mat<Num_T> get_rows(const Vec<int> &indexlist) const;
//! Get column \c c
Vec<Num_T> get_col(int c) const;
//! Get columns \c c1 through \c c2
Mat<Num_T> get_cols(int c1, int c2) const;
//! Get the columns specified by \c indexlist
Mat<Num_T> get_cols(const Vec<int> &indexlist) const;
//! Set row \c r to vector \c v
void set_row(int r, const Vec<Num_T> &v);
//! Set column \c c to vector \c v
void set_col(int c, const Vec<Num_T> &v);
//! Set rows to matrix \c m, staring from row \c r
void set_rows(int r, const Mat<Num_T> &m);
//! Set columns to matrix \c m, starting from column \c c
void set_cols(int c, const Mat<Num_T> &m);
//! Copy row \c from onto row \c to
void copy_row(int to, int from);
//! Copy column \c from onto column \c to
void copy_col(int to, int from);
//! Swap the rows \c r1 and \c r2
void swap_rows(int r1, int r2);
//! Swap the columns \c c1 and \c c2
void swap_cols(int c1, int c2);
//! This function is deprecated. Please use set_submatrix(int r, int c, const Mat<> &m) instead.
void set_submatrix(int r1, int r2, int c1, int c2, const Mat<Num_T> &m);
//! Set submatrix defined by upper-left element (r,c) and the size of matrix m to m
void set_submatrix(int r, int c, const Mat<Num_T> &m);
//! Set all elements of submatrix defined by rows r1,r2 and columns c1,c2 to value t
void set_submatrix(int r1, int r2, int c1, int c2, Num_T t);
//! Delete row number \c r
void del_row(int r);
//! Delete rows from \c r1 to \c r2
void del_rows(int r1, int r2);
//! Delete column number \c c
void del_col(int c);
//! Delete columns from \c c1 to \c c2
void del_cols(int c1, int c2);
//! Insert vector \c v at row number \c r. The matrix can be empty.
void ins_row(int r, const Vec<Num_T> &v);
//! Insert vector \c v at column number \c c. The matrix can be empty.
void ins_col(int c, const Vec<Num_T> &v);
//! Append vector \c v to the bottom of the matrix. The matrix can be empty.
void append_row(const Vec<Num_T> &v);
//! Append vector \c v to the right side of the matrix. The matrix can be empty.
void append_col(const Vec<Num_T> &v);
//! Matrix transpose
Mat<Num_T> transpose() const;
//! Matrix transpose
Mat<Num_T> T() const { return this->transpose(); }
//! Hermitian matrix transpose (conjugate transpose)
Mat<Num_T> hermitian_transpose() const;
//! Hermitian matrix transpose (conjugate transpose)
Mat<Num_T> H() const { return this->hermitian_transpose(); }
//! Concatenate the matrices \c m1 and \c m2 horizontally
friend Mat<Num_T> concat_horizontal<>(const Mat<Num_T> &m1,
const Mat<Num_T> &m2);
//! Concatenate the matrices \c m1 and \c m2 vertically
friend Mat<Num_T> concat_vertical<>(const Mat<Num_T> &m1,
const Mat<Num_T> &m2);
//! Set all elements of the matrix equal to \c t
Mat<Num_T>& operator=(Num_T t);
//! Set matrix equal to \c m
Mat<Num_T>& operator=(const Mat<Num_T> &m);
//! Set matrix equal to the vector \c v, assuming column vector
Mat<Num_T>& operator=(const Vec<Num_T> &v);
//! Set matrix equal to values in the string \c str
Mat<Num_T>& operator=(const std::string &str);
//! Set matrix equal to values in the string \c str
Mat<Num_T>& operator=(const char *str);
//! Addition of matrices
Mat<Num_T>& operator+=(const Mat<Num_T> &m);
//! Addition of scalar to matrix
Mat<Num_T>& operator+=(Num_T t);
//! Addition of two matrices
friend Mat<Num_T> operator+<>(const Mat<Num_T> &m1, const Mat<Num_T> &m2);
//! Addition of matrix and scalar
friend Mat<Num_T> operator+<>(const Mat<Num_T> &m, Num_T t);
//! Addition of scalar and matrix
friend Mat<Num_T> operator+<>(Num_T t, const Mat<Num_T> &m);
//! Subtraction of matrix
Mat<Num_T>& operator-=(const Mat<Num_T> &m);
//! Subtraction of scalar from matrix
Mat<Num_T>& operator-=(Num_T t);
//! Subtraction of \c m2 from \c m1
friend Mat<Num_T> operator-<>(const Mat<Num_T> &m1, const Mat<Num_T> &m2);
//! Subtraction of scalar from matrix
friend Mat<Num_T> operator-<>(const Mat<Num_T> &m, Num_T t);
//! Subtract matrix from scalar
friend Mat<Num_T> operator-<>(Num_T t, const Mat<Num_T> &m);
//! Subtraction of matrix
friend Mat<Num_T> operator-<>(const Mat<Num_T> &m);
//! Matrix multiplication
Mat<Num_T>& operator*=(const Mat<Num_T> &m);
//! Multiplication by a scalar
Mat<Num_T>& operator*=(Num_T t);
//! Element wise multiplication of two matrices
friend Mat<Num_T> elem_mult<>(const Mat<Num_T> &m1, const Mat<Num_T> &m2);
//! Element wise multiplication of two matrices, storing the result in matrix \c out
friend void elem_mult_out<>(const Mat<Num_T> &m1, const Mat<Num_T> &m2,
Mat<Num_T> &out);
//! Element wise multiplication of three matrices, storing the result in matrix \c out
friend void elem_mult_out<>(const Mat<Num_T> &m1, const Mat<Num_T> &m2,
const Mat<Num_T> &m3, Mat<Num_T> &out);
//! Element wise multiplication of four matrices, storing the result in matrix \c out
friend void elem_mult_out<>(const Mat<Num_T> &m1, const Mat<Num_T> &m2,
const Mat<Num_T> &m3, const Mat<Num_T> &m4,
Mat<Num_T> &out);
//! In-place element wise multiplication of two matrices. Fast version of B = elem_mult(A, B).
friend void elem_mult_inplace<>(const Mat<Num_T> &m1, Mat<Num_T> &m2);
//! Element wise multiplication of two matrices, followed by summation of the resultant elements. Fast version of sumsum(elem_mult(A, B)).
friend Num_T elem_mult_sum<>(const Mat<Num_T> &m1, const Mat<Num_T> &m2);
//! Division by a scalar
Mat<Num_T>& operator/=(Num_T t);
//! Element-wise division with the current matrix
Mat<Num_T>& operator/=(const Mat<Num_T> &m);
//! Element-wise division by a scalar
friend Mat<Num_T> operator/<>(const Mat<Num_T> &m, Num_T t);
//! Element-wise division (\c t is the dividend, elements of \c m are divisors)
friend Mat<Num_T> operator/<>(Num_T t, const Mat<Num_T> &m);
//! Element wise division of two matrices
friend Mat<Num_T> elem_div<>(const Mat<Num_T> &m1, const Mat<Num_T> &m2);
//! Element wise division of two matrices, storing the result in matrix \c out
friend void elem_div_out<>(const Mat<Num_T> &m1, const Mat<Num_T> &m2,
Mat<Num_T> &out);
//! Element wise division of two matrices, followed by summation of the resultant elements. Fast version of sumsum(elem_div(A, B)).
friend Num_T elem_div_sum<>(const Mat<Num_T> &m1, const Mat<Num_T> &m2);
//! Compare two matrices. False if wrong sizes or different values
bool operator==(const Mat<Num_T> &m) const;
//! Compare two matrices. True if different
bool operator!=(const Mat<Num_T> &m) const;
//! Get element (r,c) from matrix without boundary check (not recommended to use)
Num_T &_elem(int r, int c) { return data[r+c*no_rows]; }
//! Get element (r,c) from matrix without boundary check (not recommended to use)
const Num_T &_elem(int r, int c) const { return data[r+c*no_rows]; }
//! Get element \c i using linear addressing (by rows) without boundary check (not recommended to use)
Num_T &_elem(int i) { return data[i]; }
//! Get element \c i using linear addressing (by rows) without boundary check (not recommended to use)
const Num_T &_elem(int i) const { return data[i]; }
//! Access of the internal data structure (not recommended to use)
Num_T *_data() { return data; }
//! Access to the internal data structure (not recommended to use)
const Num_T *_data() const { return data; }
//! Access to the internal data structure (not recommended to use)
int _datasize() const { return datasize; }
protected:
//! Allocate memory for the matrix
void alloc(int rows, int cols);
//! Free the memory space of the matrix
void free();
/*! Protected integer variables
* @{ */
int datasize, no_rows, no_cols;
/*! @} */
//! Protected data pointer
Num_T *data;
//! Element factory (set to DEFAULT_FACTORY to use Num_T default constructors only)
const Factory &factory;
private:
//! Check whether element (r,c) is within the matrix
bool in_range(int r, int c) const {
return ((r >= 0) && (r < no_rows) && (c >= 0) && (c < no_cols));
}
//! Check whether row \c r is in the allowed range
bool row_in_range(int r) const { return ((r >= 0) && (r < no_rows)); }
//! Check whether column \c c is in the allowed range
bool col_in_range(int c) const { return ((c >= 0) && (c < no_cols)); }
//! Check whether element \c i is in the allowed range
bool in_range(int i) const { return ((i >= 0) && (i < datasize)); }
};
// -------------------------------------------------------------------------------------
// Type definitions of mat, cmat, imat, smat, and bmat
// -------------------------------------------------------------------------------------
/*!
\relates Mat
\brief Default Matrix Type
*/
typedef Mat<double> mat;
/*!
\relates Mat
\brief Default Complex Matrix Type
*/
typedef Mat<std::complex<double> > cmat;
/*!
\relates Mat
\brief Integer matrix
*/
typedef Mat<int> imat;
/*!
\relates Mat
\brief short int matrix
*/
typedef Mat<short int> smat;
/*!
\relates Mat
\relates GF2mat
\relates GF2mat_sparse
\brief bin matrix
*/
typedef Mat<bin> bmat;
} //namespace itpp
#include <itpp/base/vec.h>
namespace itpp
{
// ----------------------------------------------------------------------
// Declaration of input and output streams for Mat
// ----------------------------------------------------------------------
/*!
\relatesalso Mat
\brief Output stream for matrices
*/
template <class Num_T>
std::ostream &operator<<(std::ostream &os, const Mat<Num_T> &m);
/*!
\relatesalso Mat
\brief Input stream for matrices
The input can be on the form "1 2 3; 4 5 6" or "[[1 2 3][4 5 6]]", i.e. with
brackets or semicolons as row delimiters. The first form is compatible with
the set method, while the second form is compatible with the ostream
operator. The elements on a row can be separated by blank space or commas.
Rows that are shorter than the longest row are padded with zero elements.
"[]" means an empty matrix.
*/
template <class Num_T>
std::istream &operator>>(std::istream &is, Mat<Num_T> &m);
// ----------------------------------------------------------------------
// Implementation of templated Mat members and friends
// ----------------------------------------------------------------------
template<class Num_T> inline
void Mat<Num_T>::alloc(int rows, int cols)
{
if ((rows > 0) && (cols > 0)) {
datasize = rows * cols;
no_rows = rows;
no_cols = cols;
create_elements(data, datasize, factory);
}
else {
data = 0;
datasize = 0;
no_rows = 0;
no_cols = 0;
}
}
template<class Num_T> inline
void Mat<Num_T>::free()
{
destroy_elements(data, datasize);
datasize = 0;
no_rows = 0;
no_cols = 0;
}
template<class Num_T> inline
Mat<Num_T>::Mat(const Factory &f) :
datasize(0), no_rows(0), no_cols(0), data(0), factory(f) {}
template<class Num_T> inline
Mat<Num_T>::Mat(int rows, int cols, const Factory &f) :
datasize(0), no_rows(0), no_cols(0), data(0), factory(f)
{
it_assert_debug((rows >= 0) && (cols >= 0), "Mat<>::Mat(): Wrong size");
alloc(rows, cols);
}
template<class Num_T> inline
Mat<Num_T>::Mat(const Mat<Num_T> &m) :
datasize(0), no_rows(0), no_cols(0), data(0), factory(m.factory)
{
alloc(m.no_rows, m.no_cols);
copy_vector(m.datasize, m.data, data);
}
template<class Num_T> inline
Mat<Num_T>::Mat(const Mat<Num_T> &m, const Factory &f) :
datasize(0), no_rows(0), no_cols(0), data(0), factory(f)
{
alloc(m.no_rows, m.no_cols);
copy_vector(m.datasize, m.data, data);
}
template<class Num_T> inline
Mat<Num_T>::Mat(const Vec<Num_T> &v, const Factory &f) :
datasize(0), no_rows(0), no_cols(0), data(0), factory(f)
{
int size = v.size();
alloc(size, 1);
copy_vector(size, v._data(), data);
}
template<class Num_T> inline
Mat<Num_T>::Mat(const std::string &str, const Factory &f) :
datasize(0), no_rows(0), no_cols(0), data(0), factory(f)
{
set(str);
}
template<class Num_T> inline
Mat<Num_T>::Mat(const char *str, const Factory &f) :
datasize(0), no_rows(0), no_cols(0), data(0), factory(f)
{
set(std::string(str));
}
template<class Num_T>
Mat<Num_T>::Mat(const Num_T *c_array, int rows, int cols, bool row_major,
const Factory &f):
datasize(0), no_rows(0), no_cols(0), data(0), factory(f)
{
alloc(rows, cols);
if (!row_major)
copy_vector(datasize, c_array, data);
else
for (int i = 0; i < rows; i++)
for (int j = 0; j < cols; j++)
data[i+j*no_rows] = c_array[i*no_cols+j];
}
template<class Num_T> inline
Mat<Num_T>::~Mat()
{
free();
}
template<class Num_T>
void Mat<Num_T>::set_size(int rows, int cols, bool copy)
{
it_assert_debug((rows >= 0) && (cols >= 0),
"Mat<>::set_size(): Wrong size");
// check if we have to resize the current matrix
if ((no_rows == rows) && (no_cols == cols))
return;
// check if one of dimensions is zero
if ((rows == 0) || (cols == 0)) {
free();
return;
}
// conditionally copy previous matrix content
if (copy) {
// create a temporary pointer to the allocated data
Num_T* tmp = data;
// store the current number of elements and number of rows
int old_datasize = datasize;
int old_rows = no_rows;
// check the boundaries of the copied data
int min_r = (no_rows < rows) ? no_rows : rows;
int min_c = (no_cols < cols) ? no_cols : cols;
// allocate new memory
alloc(rows, cols);
// copy the previous data into the allocated memory
for (int i = 0; i < min_c; ++i) {
copy_vector(min_r, &tmp[i*old_rows], &data[i*no_rows]);
}
// fill-in the rest of matrix with zeros
for (int i = min_r; i < rows; ++i)
for (int j = 0; j < cols; ++j)
data[i+j*rows] = Num_T(0);
for (int j = min_c; j < cols; ++j)
for (int i = 0; i < min_r; ++i)
data[i+j*rows] = Num_T(0);
// delete old elements
destroy_elements(tmp, old_datasize);
}
// if possible, reuse the allocated memory
else if (datasize == rows * cols) {
no_rows = rows;
no_cols = cols;
}
// finally release old memory and allocate a new one
else {
free();
alloc(rows, cols);
}
}
template<class Num_T> inline
void Mat<Num_T>::zeros()
{
for (int i = 0; i < datasize; i++)
data[i] = Num_T(0);
}
template<class Num_T> inline
void Mat<Num_T>::ones()
{
for (int i = 0; i < datasize; i++)
data[i] = Num_T(1);
}
template<class Num_T> inline
const Num_T& Mat<Num_T>::operator()(int r, int c) const
{
it_assert_debug(in_range(r, c),
"Mat<>::operator(): Indexing out of range");
return data[r+c*no_rows];
}
template<class Num_T> inline
Num_T& Mat<Num_T>::operator()(int r, int c)
{
it_assert_debug(in_range(r, c),
"Mat<>::operator(): Indexing out of range");
return data[r+c*no_rows];
}
template<class Num_T> inline
Num_T& Mat<Num_T>::operator()(int i)
{
it_assert_debug(in_range(i), "Mat<>::operator(): Index out of range");
return data[i];
}
template<class Num_T> inline
const Num_T& Mat<Num_T>::operator()(int i) const
{
it_assert_debug(in_range(i), "Mat<>::operator(): Index out of range");
return data[i];
}
template<class Num_T> inline
const Num_T& Mat<Num_T>::get(int r, int c) const
{
return (*this)(r, c);
}
template<class Num_T> inline
const Num_T& Mat<Num_T>::get(int i) const
{
return (*this)(i);
}
template<class Num_T> inline
void Mat<Num_T>::set(int r, int c, Num_T t)
{
it_assert_debug(in_range(r, c), "Mat<>::set(): Indexing out of range");
data[r+c*no_rows] = t;
}
template<class Num_T>
void Mat<Num_T>::set(const std::string &str)
{
// actual row counter
int rows = 0;
// number of rows to allocate next time (8, 16, 32, 64, etc.)
int maxrows = 8;
// clean the current matrix content
free();
// variable to store the start of a current vector
std::string::size_type beg = 0;
std::string::size_type end = 0;
while (end != std::string::npos) {
// find next occurrence of a semicolon in string str
end = str.find(';', beg);
// parse first row into a vector v
Vec<Num_T> v(str.substr(beg, end - beg));
int v_size = v.size();
// this check is necessary to parse the following two strings as the
// same matrix: "1 0 1; ; 1 1; " and "1 0 1; 0 0 0; 1 1 0"
if ((end != std::string::npos) || (v_size > 0)) {
// matrix empty -> insert v as a first row and allocate maxrows
if (rows == 0) {
set_size(maxrows, v_size, true);
set_row(rows++, v);
}
else {
// check if we need to resize the matrix
if ((rows == maxrows) || (v_size != no_cols)) {
// we need to add new rows
if (rows == maxrows) {
maxrows *= 2;
}
// check if we need to add new columns
if (v_size > no_cols) {
set_size(maxrows, v_size, true);
}
else {
set_size(maxrows, no_cols, true);
// set the size of the parsed vector to the number of columns
v.set_size(no_cols, true);
}
}
// set the parsed vector as the next row
set_row(rows++, v);
}
}
// update the starting position of the next vector in the parsed
// string
beg = end + 1;
} // if ((end != std::string::npos) || (v.size > 0))
set_size(rows, no_cols, true);
}
template<class Num_T> inline
void Mat<Num_T>::set(const char *str)
{
set(std::string(str));
}
template<class Num_T> inline
Mat<Num_T> Mat<Num_T>::operator()(int r1, int r2, int c1, int c2) const
{
if (r1 == -1) r1 = no_rows - 1;
if (r2 == -1) r2 = no_rows - 1;
if (c1 == -1) c1 = no_cols - 1;
if (c2 == -1) c2 = no_cols - 1;
it_assert_debug((r1 >= 0) && (r1 <= r2) && (r2 < no_rows) &&
(c1 >= 0) && (c1 <= c2) && (c2 < no_cols),
"Mat<>::operator()(r1, r2, c1, c2): Wrong indexing");
Mat<Num_T> s(r2 - r1 + 1, c2 - c1 + 1);
for (int i = 0;i < s.no_cols;i++)
copy_vector(s.no_rows, data + r1 + (c1 + i)*no_rows, s.data + i*s.no_rows);
return s;
}
template<class Num_T> inline
Mat<Num_T> Mat<Num_T>::get(int r1, int r2, int c1, int c2) const
{
return (*this)(r1, r2, c1, c2);
}
template<class Num_T> inline
Vec<Num_T> Mat<Num_T>::get_row(int r) const
{
it_assert_debug(row_in_range(r), "Mat<>::get_row(): Index out of range");
Vec<Num_T> a(no_cols);
copy_vector(no_cols, data + r, no_rows, a._data(), 1);
return a;
}
template<class Num_T>
Mat<Num_T> Mat<Num_T>::get_rows(int r1, int r2) const
{
it_assert_debug((r1 >= 0) && (r1 <= r2) && (r2 < no_rows),
"Mat<>::get_rows(): Wrong indexing");
Mat<Num_T> m(r2 - r1 + 1, no_cols);
for (int i = 0; i < m.rows(); i++)
copy_vector(no_cols, data + i + r1, no_rows, m.data + i, m.no_rows);
return m;
}
template<class Num_T>
Mat<Num_T> Mat<Num_T>::get_rows(const Vec<int> &indexlist) const
{
Mat<Num_T> m(indexlist.size(), no_cols);
for (int i = 0;i < indexlist.size();i++) {
it_assert_debug(row_in_range(indexlist(i)),
"Mat<>::get_rows(indexlist): Indexing out of range");
copy_vector(no_cols, data + indexlist(i), no_rows, m.data + i, m.no_rows);
}
return m;
}
template<class Num_T> inline
Vec<Num_T> Mat<Num_T>::get_col(int c) const
{
it_assert_debug(col_in_range(c), "Mat<>::get_col(): Index out of range");
Vec<Num_T> a(no_rows);
copy_vector(no_rows, data + c*no_rows, a._data());
return a;
}
template<class Num_T>
Mat<Num_T> Mat<Num_T>::get_cols(int c1, int c2) const
{
it_assert_debug((c1 >= 0) && (c1 <= c2) && (c2 < no_cols),
"Mat<>::get_cols(): Wrong indexing");
Mat<Num_T> m(no_rows, c2 - c1 + 1);
for (int i = 0; i < m.cols(); i++)
copy_vector(no_rows, data + (i + c1)*no_rows, m.data + i*m.no_rows);
return m;
}
template<class Num_T>
Mat<Num_T> Mat<Num_T>::get_cols(const Vec<int> &indexlist) const
{
Mat<Num_T> m(no_rows, indexlist.size());
for (int i = 0; i < indexlist.size(); i++) {
it_assert_debug(col_in_range(indexlist(i)),
"Mat<>::get_cols(indexlist): Indexing out of range");
copy_vector(no_rows, data + indexlist(i)*no_rows, m.data + i*m.no_rows);
}
return m;
}
template<class Num_T> inline
void Mat<Num_T>::set_row(int r, const Vec<Num_T> &v)
{
it_assert_debug(row_in_range(r), "Mat<>::set_row(): Index out of range");
it_assert_debug(v.size() == no_cols,
"Mat<>::set_row(): Wrong size of input vector");
copy_vector(v.size(), v._data(), 1, data + r, no_rows);
}
template<class Num_T> inline
void Mat<Num_T>::set_col(int c, const Vec<Num_T> &v)
{
it_assert_debug(col_in_range(c), "Mat<>::set_col(): Index out of range");
it_assert_debug(v.size() == no_rows,
"Mat<>::set_col(): Wrong size of input vector");
copy_vector(v.size(), v._data(), data + c*no_rows);
}
template<class Num_T>
void Mat<Num_T>::set_rows(int r, const Mat<Num_T> &m)
{
it_assert_debug(row_in_range(r), "Mat<>::set_rows(): Index out of range");
it_assert_debug(no_cols == m.cols(),
"Mat<>::set_rows(): Column sizes do not match");
it_assert_debug(m.rows() + r <= no_rows,
"Mat<>::set_rows(): Not enough rows");
for (int i = 0; i < m.rows(); ++i) {
copy_vector(no_cols, m.data + i, m.no_rows, data + i + r, no_rows);
}
}
template<class Num_T>
void Mat<Num_T>::set_cols(int c, const Mat<Num_T> &m)
{
it_assert_debug(col_in_range(c), "Mat<>::set_cols(): Index out of range");
it_assert_debug(no_rows == m.rows(),
"Mat<>::set_cols(): Row sizes do not match");
it_assert_debug(m.cols() + c <= no_cols,
"Mat<>::set_cols(): Not enough colums");
for (int i = 0; i < m.cols(); ++i) {
copy_vector(no_rows, m.data + i*no_rows, data + (i + c)*no_rows);
}
}
template<class Num_T> inline
void Mat<Num_T>::copy_row(int to, int from)
{
it_assert_debug(row_in_range(to) && row_in_range(from),
"Mat<>::copy_row(): Indexing out of range");
if (from == to)
return;
copy_vector(no_cols, data + from, no_rows, data + to, no_rows);
}
template<class Num_T> inline
void Mat<Num_T>::copy_col(int to, int from)
{
it_assert_debug(col_in_range(to) && col_in_range(from),
"Mat<>::copy_col(): Indexing out of range");
if (from == to)
return;
copy_vector(no_rows, data + from*no_rows, data + to*no_rows);
}
template<class Num_T> inline
void Mat<Num_T>::swap_rows(int r1, int r2)
{
it_assert_debug(row_in_range(r1) && row_in_range(r2),
"Mat<>::swap_rows(): Indexing out of range");
if (r1 == r2)
return;
swap_vector(no_cols, data + r1, no_rows, data + r2, no_rows);
}
template<class Num_T> inline
void Mat<Num_T>::swap_cols(int c1, int c2)
{
it_assert_debug(col_in_range(c1) && col_in_range(c2),
"Mat<>::swap_cols(): Indexing out of range");
if (c1 == c2)
return;
swap_vector(no_rows, data + c1*no_rows, data + c2*no_rows);
}
template<class Num_T>
void Mat<Num_T>::set_submatrix(int r1, int, int c1, int, const Mat<Num_T> &m)
{
it_warning("Mat<>::set_submatrix(r1, r2, r3, r4, m): This function is "
"deprecated and might be removed from future IT++ releases. "
"Please use Mat<>::set_submatrix(r, c, m) function instead.");
set_submatrix(r1, c1, m);
}
template<class Num_T> inline
void Mat<Num_T>::set_submatrix(int r, int c, const Mat<Num_T> &m)
{
it_assert_debug((r >= 0) && (r + m.no_rows <= no_rows) &&
(c >= 0) && (c + m.no_cols <= no_cols),
"Mat<>::set_submatrix(): Indexing out of range "
"or wrong input matrix");
for (int i = 0; i < m.no_cols; i++)
copy_vector(m.no_rows, m.data + i*m.no_rows, data + (c + i)*no_rows + r);
}
template<class Num_T> inline
void Mat<Num_T>::set_submatrix(int r1, int r2, int c1, int c2, Num_T t)
{
if (r1 == -1) r1 = no_rows - 1;
if (r2 == -1) r2 = no_rows - 1;
if (c1 == -1) c1 = no_cols - 1;
if (c2 == -1) c2 = no_cols - 1;
it_assert_debug((r1 >= 0) && (r1 <= r2) && (r2 < no_rows) &&
(c1 >= 0) && (c1 <= c2) && (c2 < no_cols),
"Mat<>::set_submatrix(): Wrong indexing");
for (int i = c1; i <= c2; i++) {
int pos = i * no_rows + r1;
for (int j = r1; j <= r2; j++)
data[pos++] = t;
}
}
template<class Num_T>
void Mat<Num_T>::del_row(int r)
{
it_assert_debug(row_in_range(r), "Mat<>::del_row(): Index out of range");
Mat<Num_T> Temp(*this);
set_size(no_rows - 1, no_cols, false);
for (int i = 0 ; i < r ; i++) {
copy_vector(no_cols, &Temp.data[i], no_rows + 1, &data[i], no_rows);
}
for (int i = r ; i < no_rows ; i++) {
copy_vector(no_cols, &Temp.data[i+1], no_rows + 1, &data[i], no_rows);
}
}
template<class Num_T>
void Mat<Num_T>::del_rows(int r1, int r2)
{
it_assert_debug((r1 >= 0) && (r1 <= r2) && (r2 < no_rows),
"Mat<>::del_rows(): Indexing out of range");
Mat<Num_T> Temp(*this);
int no_del_rows = r2 - r1 + 1;
set_size(no_rows - no_del_rows, no_cols, false);
for (int i = 0; i < r1 ; ++i) {
copy_vector(no_cols, &Temp.data[i], Temp.no_rows, &data[i], no_rows);
}
for (int i = r2 + 1; i < Temp.no_rows; ++i) {
copy_vector(no_cols, &Temp.data[i], Temp.no_rows, &data[i-no_del_rows],
no_rows);
}
}
template<class Num_T>
void Mat<Num_T>::del_col(int c)
{
it_assert_debug(col_in_range(c), "Mat<>::del_col(): Index out of range");
Mat<Num_T> Temp(*this);
set_size(no_rows, no_cols - 1, false);
copy_vector(c*no_rows, Temp.data, data);
copy_vector((no_cols - c)*no_rows, &Temp.data[(c+1)*no_rows], &data[c*no_rows]);
}
template<class Num_T>
void Mat<Num_T>::del_cols(int c1, int c2)
{
it_assert_debug((c1 >= 0) && (c1 <= c2) && (c2 < no_cols),
"Mat<>::del_cols(): Indexing out of range");
Mat<Num_T> Temp(*this);
int n_deleted_cols = c2 - c1 + 1;
set_size(no_rows, no_cols - n_deleted_cols, false);
copy_vector(c1*no_rows, Temp.data, data);
copy_vector((no_cols - c1)*no_rows, &Temp.data[(c2+1)*no_rows], &data[c1*no_rows]);
}
template<class Num_T>
void Mat<Num_T>::ins_row(int r, const Vec<Num_T> &v)
{
it_assert_debug((r >= 0) && (r <= no_rows),
"Mat<>::ins_row(): Index out of range");
it_assert_debug((v.size() == no_cols) || (no_rows == 0),
"Mat<>::ins_row(): Wrong size of the input vector");
if (no_cols == 0) {
no_cols = v.size();
}
Mat<Num_T> Temp(*this);
set_size(no_rows + 1, no_cols, false);
for (int i = 0 ; i < r ; i++) {
copy_vector(no_cols, &Temp.data[i], no_rows - 1, &data[i], no_rows);
}
copy_vector(no_cols, v._data(), 1, &data[r], no_rows);
for (int i = r + 1 ; i < no_rows ; i++) {
copy_vector(no_cols, &Temp.data[i-1], no_rows - 1, &data[i], no_rows);
}
}
template<class Num_T>
void Mat<Num_T>::ins_col(int c, const Vec<Num_T> &v)
{
it_assert_debug((c >= 0) && (c <= no_cols),
"Mat<>::ins_col(): Index out of range");
it_assert_debug((v.size() == no_rows) || (no_cols == 0),
"Mat<>::ins_col(): Wrong size of the input vector");
if (no_rows == 0) {
no_rows = v.size();
}
Mat<Num_T> Temp(*this);
set_size(no_rows, no_cols + 1, false);
copy_vector(c*no_rows, Temp.data, data);
copy_vector(no_rows, v._data(), &data[c*no_rows]);
copy_vector((no_cols - c - 1)*no_rows, &Temp.data[c*no_rows], &data[(c+1)*no_rows]);
}
template<class Num_T> inline
void Mat<Num_T>::append_row(const Vec<Num_T> &v)
{
ins_row(no_rows, v);
}
template<class Num_T> inline
void Mat<Num_T>::append_col(const Vec<Num_T> &v)
{
ins_col(no_cols, v);
}
template<class Num_T>
Mat<Num_T> Mat<Num_T>::transpose() const
{
Mat<Num_T> temp(no_cols, no_rows);
for (int i = 0; i < no_rows; ++i) {
copy_vector(no_cols, &data[i], no_rows, &temp.data[i * no_cols], 1);
}
return temp;
}
template<class Num_T>
Mat<Num_T> Mat<Num_T>::hermitian_transpose() const
{
Mat<Num_T> temp(no_cols, no_rows);
for (int i = 0; i < no_rows; ++i) {
copy_vector(no_cols, &data[i], no_rows, &temp.data[i * no_cols], 1);
}
return temp;
}
//! \cond
template<>
ITPP_EXPORT cmat cmat::hermitian_transpose() const;
//! \endcond
template<class Num_T>
Mat<Num_T> concat_horizontal(const Mat<Num_T> &m1, const Mat<Num_T> &m2)
{
// if one of the input matrix is empty just copy the other one as a result
if (m1.no_cols == 0)
return m2;
if (m2.no_cols == 0)
return m1;
it_assert_debug(m1.no_rows == m2.no_rows,
"Mat<>::concat_horizontal(): Wrong sizes");
int no_rows = m1.no_rows;
Mat<Num_T> temp(no_rows, m1.no_cols + m2.no_cols);
for (int i = 0; i < m1.no_cols; ++i) {
copy_vector(no_rows, &m1.data[i * no_rows], &temp.data[i * no_rows]);
}
for (int i = 0; i < m2.no_cols; ++i) {
copy_vector(no_rows, &m2.data[i * no_rows], &temp.data[(m1.no_cols + i)
* no_rows]);
}
return temp;
}
template<class Num_T>
Mat<Num_T> concat_vertical(const Mat<Num_T> &m1, const Mat<Num_T> &m2)
{
// if one of the input matrix is empty just copy the other one as a result
if (m1.no_rows == 0)
return m2;
if (m2.no_rows == 0)
return m1;
it_assert_debug(m1.no_cols == m2.no_cols,
"Mat<>::concat_vertical(): Wrong sizes");
int no_cols = m1.no_cols;
Mat<Num_T> temp(m1.no_rows + m2.no_rows, no_cols);
for (int i = 0; i < no_cols; ++i) {
copy_vector(m1.no_rows, &m1.data[i * m1.no_rows],
&temp.data[i * temp.no_rows]);
copy_vector(m2.no_rows, &m2.data[i * m2.no_rows],
&temp.data[i * temp.no_rows + m1.no_rows]);
}
return temp;
}
template<class Num_T> inline
Mat<Num_T>& Mat<Num_T>::operator=(Num_T t)
{
for (int i = 0; i < datasize; i++)
data[i] = t;
return *this;
}
template<class Num_T> inline
Mat<Num_T>& Mat<Num_T>::operator=(const Mat<Num_T> &m)
{
if (this != &m) {
set_size(m.no_rows, m.no_cols, false);
if (m.datasize != 0)
copy_vector(m.datasize, m.data, data);
}
return *this;
}
template<class Num_T> inline
Mat<Num_T>& Mat<Num_T>::operator=(const Vec<Num_T> &v)
{
it_assert_debug(((no_rows == 1) && (no_cols == v.size()))
|| ((no_cols == 1) && (no_rows == v.size())),
"Mat<>::operator=(): Wrong size of the input vector");
set_size(v.size(), 1, false);
copy_vector(v.size(), v._data(), data);
return *this;
}
template<class Num_T> inline
Mat<Num_T>& Mat<Num_T>::operator=(const std::string &str)
{
set(str);
return *this;
}
template<class Num_T> inline
Mat<Num_T>& Mat<Num_T>::operator=(const char *str)
{
set(std::string(str));
return *this;
}
//-------------------- Templated friend functions --------------------------
template<class Num_T>
Mat<Num_T>& Mat<Num_T>::operator+=(const Mat<Num_T> &m)
{
if (datasize == 0)
operator=(m);
else {
int i, j, m_pos = 0, pos = 0;
it_assert_debug(m.no_rows == no_rows && m.no_cols == no_cols, "Mat<Num_T>::operator+=: wrong sizes");
for (i = 0; i < no_cols; i++) {
for (j = 0; j < no_rows; j++)
data[pos+j] += m.data[m_pos+j];
pos += no_rows;
m_pos += m.no_rows;
}
}
return *this;
}
template<class Num_T> inline
Mat<Num_T>& Mat<Num_T>::operator+=(Num_T t)
{
for (int i = 0; i < datasize; i++)
data[i] += t;
return *this;
}
template<class Num_T>
Mat<Num_T> operator+(const Mat<Num_T> &m1, const Mat<Num_T> &m2)
{
Mat<Num_T> r(m1.no_rows, m1.no_cols);
int i, j, m1_pos = 0, m2_pos = 0, r_pos = 0;
it_assert_debug((m1.no_rows == m2.no_rows) && (m1.no_cols == m2.no_cols),
"Mat<>::operator+(): Wrong sizes");
for (i = 0; i < r.no_cols; i++) {
for (j = 0; j < r.no_rows; j++)
r.data[r_pos+j] = m1.data[m1_pos+j] + m2.data[m2_pos+j];
// next column
m1_pos += m1.no_rows;
m2_pos += m2.no_rows;
r_pos += r.no_rows;
}
return r;
}
template<class Num_T>
Mat<Num_T> operator+(const Mat<Num_T> &m, Num_T t)
{
Mat<Num_T> r(m.no_rows, m.no_cols);
for (int i = 0; i < r.datasize; i++)
r.data[i] = m.data[i] + t;
return r;
}
template<class Num_T>
Mat<Num_T> operator+(Num_T t, const Mat<Num_T> &m)
{
Mat<Num_T> r(m.no_rows, m.no_cols);
for (int i = 0; i < r.datasize; i++)
r.data[i] = t + m.data[i];
return r;
}
template<class Num_T>
Mat<Num_T>& Mat<Num_T>::operator-=(const Mat<Num_T> &m)
{
int i, j, m_pos = 0, pos = 0;
if (datasize == 0) {
set_size(m.no_rows, m.no_cols, false);
for (i = 0; i < no_cols; i++) {
for (j = 0; j < no_rows; j++)
data[pos+j] = -m.data[m_pos+j];
// next column
m_pos += m.no_rows;
pos += no_rows;
}
}
else {
it_assert_debug((m.no_rows == no_rows) && (m.no_cols == no_cols),
"Mat<>::operator-=(): Wrong sizes");
for (i = 0; i < no_cols; i++) {
for (j = 0; j < no_rows; j++)
data[pos+j] -= m.data[m_pos+j];
// next column
m_pos += m.no_rows;
pos += no_rows;
}
}
return *this;
}
template<class Num_T>
Mat<Num_T> operator-(const Mat<Num_T> &m1, const Mat<Num_T> &m2)
{
Mat<Num_T> r(m1.no_rows, m1.no_cols);
int i, j, m1_pos = 0, m2_pos = 0, r_pos = 0;
it_assert_debug((m1.no_rows == m2.no_rows) && (m1.no_cols == m2.no_cols),
"Mat<>::operator-(): Wrong sizes");
for (i = 0; i < r.no_cols; i++) {
for (j = 0; j < r.no_rows; j++)
r.data[r_pos+j] = m1.data[m1_pos+j] - m2.data[m2_pos+j];
// next column
m1_pos += m1.no_rows;
m2_pos += m2.no_rows;
r_pos += r.no_rows;
}
return r;
}
template<class Num_T> inline
Mat<Num_T>& Mat<Num_T>::operator-=(Num_T t)
{
for (int i = 0; i < datasize; i++)
data[i] -= t;
return *this;
}
template<class Num_T>
Mat<Num_T> operator-(const Mat<Num_T> &m, Num_T t)
{
Mat<Num_T> r(m.no_rows, m.no_cols);
int i, j, m_pos = 0, r_pos = 0;
for (i = 0; i < r.no_cols; i++) {
for (j = 0; j < r.no_rows; j++)
r.data[r_pos+j] = m.data[m_pos+j] - t;
// next column
m_pos += m.no_rows;
r_pos += r.no_rows;
}
return r;
}
template<class Num_T>
Mat<Num_T> operator-(Num_T t, const Mat<Num_T> &m)
{
Mat<Num_T> r(m.no_rows, m.no_cols);
int i, j, m_pos = 0, r_pos = 0;
for (i = 0; i < r.no_cols; i++) {
for (j = 0; j < r.no_rows; j++)
r.data[r_pos+j] = t - m.data[m_pos+j];
// next column
m_pos += m.no_rows;
r_pos += r.no_rows;
}
return r;
}
template<class Num_T>
Mat<Num_T> operator-(const Mat<Num_T> &m)
{
Mat<Num_T> r(m.no_rows, m.no_cols);
int i, j, m_pos = 0, r_pos = 0;
for (i = 0; i < r.no_cols; i++) {
for (j = 0; j < r.no_rows; j++)
r.data[r_pos+j] = -m.data[m_pos+j];
// next column
m_pos += m.no_rows;
r_pos += r.no_rows;
}
return r;
}
template<class Num_T>
Mat<Num_T>& Mat<Num_T>::operator*=(const Mat<Num_T> &m)
{
it_assert_debug(no_cols == m.no_rows, "Mat<>::operator*=(): Wrong sizes");
Mat<Num_T> r(no_rows, m.no_cols);
Num_T tmp;
int i, j, k, r_pos = 0, pos = 0, m_pos = 0;
for (i = 0; i < r.no_cols; i++) {
for (j = 0; j < r.no_rows; j++) {
tmp = Num_T(0);
pos = 0;
for (k = 0; k < no_cols; k++) {
tmp += data[pos+j] * m.data[m_pos+k];
pos += no_rows;
}
r.data[r_pos+j] = tmp;
}
r_pos += r.no_rows;
m_pos += m.no_rows;
}
operator=(r); // time consuming
return *this;
}
//! \cond
template<> ITPP_EXPORT mat& mat::operator*=(const mat &m);
template<> ITPP_EXPORT cmat& cmat::operator*=(const cmat &m);
//! \endcond
template<class Num_T> inline
Mat<Num_T>& Mat<Num_T>::operator*=(Num_T t)
{
scal_vector(datasize, t, data);
return *this;
}
//! Multiplication of two matrices
template<class Num_T>
Mat<Num_T> operator*(const Mat<Num_T> &m1, const Mat<Num_T> &m2)
{
it_assert_debug(m1.cols() == m2.rows(),
"Mat<>::operator*(): Wrong sizes");
Mat<Num_T> r(m1.rows(), m2.cols());
Num_T tmp;
int i, j, k;
Num_T *tr = r._data();
const Num_T *t1; const Num_T *t2 = m2._data();
for (i = 0; i < r.cols(); i++) {
for (j = 0; j < r.rows(); j++) {
tmp = Num_T(0);
t1 = m1._data() + j;
for (k = m1.cols(); k > 0; k--) {
tmp += *(t1) * *(t2++);
t1 += m1.rows();
}
*(tr++) = tmp;
t2 -= m2.rows();
}
t2 += m2.rows();
}
return r;
}
//! \cond
template<> ITPP_EXPORT mat operator*(const mat &m1, const mat &m2);
template<> ITPP_EXPORT cmat operator*(const cmat &m1, const cmat &m2);
//! \endcond
//! Multiplication of matrix \c m and vector \c v (column vector)
template<class Num_T>
Vec<Num_T> operator*(const Mat<Num_T> &m, const Vec<Num_T> &v)
{
it_assert_debug(m.cols() == v.size(),
"Mat<>::operator*(): Wrong sizes");
Vec<Num_T> r(m.rows());
int i, k, m_pos;
for (i = 0; i < m.rows(); i++) {
r(i) = Num_T(0);
m_pos = 0;
for (k = 0; k < m.cols(); k++) {
r(i) += m._data()[m_pos+i] * v(k);
m_pos += m.rows();
}
}
return r;
}
//! \cond
template<> ITPP_EXPORT vec operator*(const mat &m, const vec &v);
template<> ITPP_EXPORT cvec operator*(const cmat &m, const cvec &v);
//! \endcond
//! Multiplication of matrix and scalar
template<class Num_T>
Mat<Num_T> operator*(const Mat<Num_T> &m, Num_T t)
{
Mat<Num_T> r(m.rows(), m.cols());
const Num_T* m_data = m._data();
Num_T* r_data = r._data();
for (int i = 0; i < r._datasize(); i++)
r_data[i] = m_data[i] * t;
return r;
}
//! Multiplication of scalar and matrix
template<class Num_T> inline
Mat<Num_T> operator*(Num_T t, const Mat<Num_T> &m)
{
return operator*(m, t);
}
template<class Num_T> inline
Mat<Num_T> elem_mult(const Mat<Num_T> &m1, const Mat<Num_T> &m2)
{
Mat<Num_T> out;
elem_mult_out(m1, m2, out);
return out;
}
template<class Num_T>
void elem_mult_out(const Mat<Num_T> &m1, const Mat<Num_T> &m2,
Mat<Num_T> &out)
{
it_assert_debug((m1.no_rows == m2.no_rows) && (m1.no_cols == m2.no_cols),
"Mat<>::elem_mult_out(): Wrong sizes");
out.set_size(m1.no_rows, m1.no_cols);
for (int i = 0; i < out.datasize; i++)
out.data[i] = m1.data[i] * m2.data[i];
}
template<class Num_T>
void elem_mult_out(const Mat<Num_T> &m1, const Mat<Num_T> &m2,
const Mat<Num_T> &m3, Mat<Num_T> &out)
{
it_assert_debug((m1.no_rows == m2.no_rows) && (m1.no_rows == m3.no_rows)
&& (m1.no_cols == m2.no_cols) && (m1.no_cols == m3.no_cols),
"Mat<>::elem_mult_out(): Wrong sizes");
out.set_size(m1.no_rows, m1.no_cols);
for (int i = 0; i < out.datasize; i++)
out.data[i] = m1.data[i] * m2.data[i] * m3.data[i];
}
template<class Num_T>
void elem_mult_out(const Mat<Num_T> &m1, const Mat<Num_T> &m2,
const Mat<Num_T> &m3, const Mat<Num_T> &m4,
Mat<Num_T> &out)
{
it_assert_debug((m1.no_rows == m2.no_rows) && (m1.no_rows == m3.no_rows)
&& (m1.no_rows == m4.no_rows) && (m1.no_cols == m2.no_cols)
&& (m1.no_cols == m3.no_cols) && (m1.no_cols == m4.no_cols),
"Mat<>::elem_mult_out(): Wrong sizes");
out.set_size(m1.no_rows, m1.no_cols);
for (int i = 0; i < out.datasize; i++)
out.data[i] = m1.data[i] * m2.data[i] * m3.data[i] * m4.data[i];
}
template<class Num_T>
#ifndef _MSC_VER
inline
#endif
void elem_mult_inplace(const Mat<Num_T> &m1, Mat<Num_T> &m2)
{
it_assert_debug((m1.no_rows == m2.no_rows) && (m1.no_cols == m2.no_cols),
"Mat<>::elem_mult_inplace(): Wrong sizes");
for (int i = 0; i < m2.datasize; i++)
m2.data[i] *= m1.data[i];
}
template<class Num_T> inline
Num_T elem_mult_sum(const Mat<Num_T> &m1, const Mat<Num_T> &m2)
{
it_assert_debug((m1.no_rows == m2.no_rows) && (m1.no_cols == m2.no_cols),
"Mat<>::elem_mult_sum(): Wrong sizes");
Num_T acc = 0;
for (int i = 0; i < m1.datasize; i++)
acc += m1.data[i] * m2.data[i];
return acc;
}
template<class Num_T> inline
Mat<Num_T>& Mat<Num_T>::operator/=(Num_T t)
{
for (int i = 0; i < datasize; i++)
data[i] /= t;
return *this;
}
template<class Num_T> inline
Mat<Num_T>& Mat<Num_T>::operator/=(const Mat<Num_T> &m)
{
it_assert_debug((m.no_rows == no_rows) && (m.no_cols == no_cols),
"Mat<>::operator/=(): Wrong sizes");
for (int i = 0; i < datasize; i++)
data[i] /= m.data[i];
return *this;
}
template<class Num_T>
Mat<Num_T> operator/(const Mat<Num_T> &m, Num_T t)
{
Mat<Num_T> r(m.no_rows, m.no_cols);
for (int i = 0; i < r.datasize; ++i)
r.data[i] = m.data[i] / t;
return r;
}
template<class Num_T>
Mat<Num_T> operator/(Num_T t, const Mat<Num_T> &m)
{
Mat<Num_T> r(m.no_rows, m.no_cols);
for (int i = 0; i < r.datasize; ++i)
r.data[i] = t / m.data[i];
return r;
}
template<class Num_T> inline
Mat<Num_T> elem_div(const Mat<Num_T> &m1, const Mat<Num_T> &m2)
{
Mat<Num_T> out;
elem_div_out(m1, m2, out);
return out;
}
template<class Num_T>
void elem_div_out(const Mat<Num_T> &m1, const Mat<Num_T> &m2,
Mat<Num_T> &out)
{
it_assert_debug((m1.no_rows == m2.no_rows) && (m1.no_cols == m2.no_cols),
"Mat<>::elem_div_out(): Wrong sizes");
if ((out.no_rows != m1.no_rows) || (out.no_cols != m1.no_cols))
out.set_size(m1.no_rows, m1.no_cols);
for (int i = 0; i < out.datasize; i++)
out.data[i] = m1.data[i] / m2.data[i];
}
template<class Num_T> inline
Num_T elem_div_sum(const Mat<Num_T> &m1, const Mat<Num_T> &m2)
{
it_assert_debug((m1.no_rows == m2.no_rows) && (m1.no_cols == m2.no_cols),
"Mat<>::elem_div_sum(): Wrong sizes");
Num_T acc = 0;
for (int i = 0; i < m1.datasize; i++)
acc += m1.data[i] / m2.data[i];
return acc;
}
template<class Num_T>
bool Mat<Num_T>::operator==(const Mat<Num_T> &m) const
{
if (no_rows != m.no_rows || no_cols != m.no_cols) return false;
for (int i = 0;i < datasize;i++) {
if (data[i] != m.data[i]) return false;
}
return true;
}
template<class Num_T>
bool Mat<Num_T>::operator!=(const Mat<Num_T> &m) const
{
if (no_rows != m.no_rows || no_cols != m.no_cols) return true;
for (int i = 0;i < datasize;i++) {
if (data[i] != m.data[i]) return true;
}
return false;
}
template <class Num_T>
std::ostream &operator<<(std::ostream &os, const Mat<Num_T> &m)
{
int i;
switch (m.rows()) {
case 0 :
os << "[]";
break;
case 1 :
os << '[' << m.get_row(0) << ']';
break;
default:
os << '[' << m.get_row(0) << std::endl;
for (i = 1; i < m.rows() - 1; i++)
os << ' ' << m.get_row(i) << std::endl;
os << ' ' << m.get_row(m.rows() - 1) << ']';
}
return os;
}
template <class Num_T>
std::istream &operator>>(std::istream &is, Mat<Num_T> &m)
{
std::ostringstream buffer;
bool started = false;
bool finished = false;
bool brackets = false;
bool within_double_brackets = false;
char c;
while (!finished) {
if (is.eof()) {
finished = true;
}
else {
is.get(c);
if (is.eof() || (c == '\n')) {
if (brackets) {
// Right bracket missing
is.setstate(std::ios_base::failbit);
finished = true;
}
else if (!((c == '\n') && !started)) {
finished = true;
}
}
else if ((c == ' ') || (c == '\t')) {
if (started) {
buffer << ' ';
}
}
else if (c == '[') {
if ((started && !brackets) || within_double_brackets) {
// Unexpected left bracket
is.setstate(std::ios_base::failbit);
finished = true;
}
else if (!started) {
started = true;
brackets = true;
}
else {
within_double_brackets = true;
}
}
else if (c == ']') {
if (!started || !brackets) {
// Unexpected right bracket
is.setstate(std::ios_base::failbit);
finished = true;
}
else if (within_double_brackets) {
within_double_brackets = false;
buffer << ';';
}
else {
finished = true;
}
while (!is.eof() && (((c = static_cast<char>(is.peek())) == ' ')
|| (c == '\t'))) {
is.get();
}
if (!is.eof() && (c == '\n')) {
is.get();
}
}
else {
started = true;
buffer << c;
}
}
}
if (!started) {
m.set_size(0, false);
}
else {
m.set(buffer.str());
}
return is;
}
//! \cond
// ---------------------------------------------------------------------
// Instantiations
// ---------------------------------------------------------------------
// class instantiations
ITPP_EXPORT_TEMPLATE template class ITPP_EXPORT Mat<double>;
ITPP_EXPORT_TEMPLATE template class ITPP_EXPORT Mat<std::complex<double> >;
ITPP_EXPORT_TEMPLATE template class ITPP_EXPORT Mat<int>;
ITPP_EXPORT_TEMPLATE template class ITPP_EXPORT Mat<short int>;
ITPP_EXPORT_TEMPLATE template class ITPP_EXPORT Mat<bin>;
// addition operators
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT mat operator+(const mat &m1, const mat &m2);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT cmat operator+(const cmat &m1, const cmat &m2);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT imat operator+(const imat &m1, const imat &m2);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT smat operator+(const smat &m1, const smat &m2);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT bmat operator+(const bmat &m1, const bmat &m2);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT mat operator+(const mat &m, double t);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT cmat operator+(const cmat &m, std::complex<double> t);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT imat operator+(const imat &m, int t);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT smat operator+(const smat &m, short t);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT bmat operator+(const bmat &m, bin t);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT mat operator+(double t, const mat &m);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT cmat operator+(std::complex<double> t, const cmat &m);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT imat operator+(int t, const imat &m);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT smat operator+(short t, const smat &m);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT bmat operator+(bin t, const bmat &m);
// subtraction operators
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT mat operator-(const mat &m1, const mat &m2);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT cmat operator-(const cmat &m1, const cmat &m2);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT imat operator-(const imat &m1, const imat &m2);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT smat operator-(const smat &m1, const smat &m2);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT bmat operator-(const bmat &m1, const bmat &m2);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT mat operator-(const mat &m, double t);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT cmat operator-(const cmat &m, std::complex<double> t);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT imat operator-(const imat &m, int t);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT smat operator-(const smat &m, short t);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT bmat operator-(const bmat &m, bin t);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT mat operator-(double t, const mat &m);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT cmat operator-(std::complex<double> t, const cmat &m);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT imat operator-(int t, const imat &m);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT smat operator-(short t, const smat &m);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT bmat operator-(bin t, const bmat &m);
// unary minus
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT mat operator-(const mat &m);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT cmat operator-(const cmat &m);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT imat operator-(const imat &m);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT smat operator-(const smat &m);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT bmat operator-(const bmat &m);
// multiplication operators
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT imat operator*(const imat &m1, const imat &m2);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT smat operator*(const smat &m1, const smat &m2);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT bmat operator*(const bmat &m1, const bmat &m2);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT ivec operator*(const imat &m, const ivec &v);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT svec operator*(const smat &m, const svec &v);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT bvec operator*(const bmat &m, const bvec &v);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT mat operator*(const mat &m, double t);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT cmat operator*(const cmat &m, std::complex<double> t);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT imat operator*(const imat &m, int t);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT smat operator*(const smat &m, short t);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT bmat operator*(const bmat &m, bin t);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT mat operator*(double t, const mat &m);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT cmat operator*(std::complex<double> t, const cmat &m);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT imat operator*(int t, const imat &m);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT smat operator*(short t, const smat &m);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT bmat operator*(bin t, const bmat &m);
// element-wise multiplication
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT mat elem_mult(const mat &m1, const mat &m2);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT cmat elem_mult(const cmat &m1, const cmat &m2);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT imat elem_mult(const imat &m1, const imat &m2);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT smat elem_mult(const smat &m1, const smat &m2);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT bmat elem_mult(const bmat &m1, const bmat &m2);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT void elem_mult_out(const mat &m1, const mat &m2, mat &out);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT void elem_mult_out(const cmat &m1, const cmat &m2,
cmat &out);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT void elem_mult_out(const imat &m1, const imat &m2,
imat &out);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT void elem_mult_out(const smat &m1, const smat &m2,
smat &out);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT void elem_mult_out(const bmat &m1, const bmat &m2,
bmat &out);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT void elem_mult_out(const mat &m1, const mat &m2,
const mat &m3, mat &out);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT void elem_mult_out(const cmat &m1, const cmat &m2,
const cmat &m3, cmat &out);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT void elem_mult_out(const imat &m1, const imat &m2,
const imat &m3, imat &out);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT void elem_mult_out(const smat &m1, const smat &m2,
const smat &m3, smat &out);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT void elem_mult_out(const bmat &m1, const bmat &m2,
const bmat &m3, bmat &out);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT void elem_mult_out(const mat &m1, const mat &m2,
const mat &m3, const mat &m4, mat &out);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT void elem_mult_out(const cmat &m1, const cmat &m2,
const cmat &m3, const cmat &m4,
cmat &out);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT void elem_mult_out(const imat &m1, const imat &m2,
const imat &m3, const imat &m4,
imat &out);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT void elem_mult_out(const smat &m1, const smat &m2,
const smat &m3, const smat &m4,
smat &out);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT void elem_mult_out(const bmat &m1, const bmat &m2,
const bmat &m3, const bmat &m4,
bmat &out);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT void elem_mult_inplace(const mat &m1, mat &m2);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT void elem_mult_inplace(const cmat &m1, cmat &m2);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT void elem_mult_inplace(const imat &m1, imat &m2);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT void elem_mult_inplace(const smat &m1, smat &m2);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT void elem_mult_inplace(const bmat &m1, bmat &m2);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT double elem_mult_sum(const mat &m1, const mat &m2);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT std::complex<double> elem_mult_sum(const cmat &m1,
const cmat &m2);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT int elem_mult_sum(const imat &m1, const imat &m2);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT short elem_mult_sum(const smat &m1, const smat &m2);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT bin elem_mult_sum(const bmat &m1, const bmat &m2);
// division operator
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT mat operator/(double t, const mat &m);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT cmat operator/(std::complex<double> t, const cmat &m);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT imat operator/(int t, const imat &m);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT smat operator/(short t, const smat &m);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT bmat operator/(bin t, const bmat &m);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT mat operator/(const mat &m, double t);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT cmat operator/(const cmat &m, std::complex<double> t);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT imat operator/(const imat &m, int t);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT smat operator/(const smat &m, short t);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT bmat operator/(const bmat &m, bin t);
// element-wise division
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT mat elem_div(const mat &m1, const mat &m2);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT cmat elem_div(const cmat &m1, const cmat &m2);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT imat elem_div(const imat &m1, const imat &m2);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT smat elem_div(const smat &m1, const smat &m2);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT bmat elem_div(const bmat &m1, const bmat &m2);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT void elem_div_out(const mat &m1, const mat &m2, mat &out);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT void elem_div_out(const cmat &m1, const cmat &m2, cmat &out);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT void elem_div_out(const imat &m1, const imat &m2, imat &out);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT void elem_div_out(const smat &m1, const smat &m2, smat &out);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT void elem_div_out(const bmat &m1, const bmat &m2, bmat &out);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT double elem_div_sum(const mat &m1, const mat &m2);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT std::complex<double> elem_div_sum(const cmat &m1,
const cmat &m2);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT int elem_div_sum(const imat &m1, const imat &m2);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT short elem_div_sum(const smat &m1, const smat &m2);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT bin elem_div_sum(const bmat &m1, const bmat &m2);
// concatenation
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT mat concat_horizontal(const mat &m1, const mat &m2);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT cmat concat_horizontal(const cmat &m1, const cmat &m2);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT imat concat_horizontal(const imat &m1, const imat &m2);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT smat concat_horizontal(const smat &m1, const smat &m2);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT bmat concat_horizontal(const bmat &m1, const bmat &m2);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT mat concat_vertical(const mat &m1, const mat &m2);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT cmat concat_vertical(const cmat &m1, const cmat &m2);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT imat concat_vertical(const imat &m1, const imat &m2);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT smat concat_vertical(const smat &m1, const smat &m2);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT bmat concat_vertical(const bmat &m1, const bmat &m2);
// I/O streams
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT std::ostream &operator<<(std::ostream &os, const mat &m);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT std::ostream &operator<<(std::ostream &os, const cmat &m);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT std::ostream &operator<<(std::ostream &os, const imat &m);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT std::ostream &operator<<(std::ostream &os, const smat &m);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT std::ostream &operator<<(std::ostream &os, const bmat &m);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT std::istream &operator>>(std::istream &is, mat &m);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT std::istream &operator>>(std::istream &is, cmat &m);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT std::istream &operator>>(std::istream &is, imat &m);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT std::istream &operator>>(std::istream &is, smat &m);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT std::istream &operator>>(std::istream &is, bmat &m);
//! \endcond
} // namespace itpp
#endif // #ifndef MAT_H
|