This file is indexed.

/usr/include/itpp/base/matfunc.h is in libitpp-dev 4.3.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
/*!
 * \file
 * \brief Various functions on vectors and matrices - header file
 * \author Tony Ottosson, Adam Piatyszek, Conrad Sanderson, Mark Dobossy
 *         and Martin Senst
 *
 * -------------------------------------------------------------------------
 *
 * Copyright (C) 1995-2010  (see AUTHORS file for a list of contributors)
 *
 * This file is part of IT++ - a C++ library of mathematical, signal
 * processing, speech processing, and communications classes and functions.
 *
 * IT++ is free software: you can redistribute it and/or modify it under the
 * terms of the GNU General Public License as published by the Free Software
 * Foundation, either version 3 of the License, or (at your option) any
 * later version.
 *
 * IT++ is distributed in the hope that it will be useful, but WITHOUT ANY
 * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along
 * with IT++.  If not, see <http://www.gnu.org/licenses/>.
 *
 * -------------------------------------------------------------------------
 */

#ifndef MATFUNC_H
#define MATFUNC_H

#include <itpp/base/mat.h>
#include <itpp/base/math/log_exp.h>
#include <itpp/base/math/elem_math.h>
#include <itpp/base/algebra/inv.h>
#include <itpp/base/algebra/svd.h>
#include <itpp/itexports.h>

namespace itpp
{

/*!
  \addtogroup matrix_functions
  \brief Functions on vectors and matrices
*/
//!@{

//! Length of vector
template<class T>
int length(const Vec<T> &v) { return v.length(); }

//! Length of vector
template<class T>
int size(const Vec<T> &v) { return v.length(); }

//! Sum of all elements in the vector
template<class T>
T sum(const Vec<T> &v)
{
  T M = 0;

  for (int i = 0;i < v.length();i++)
    M += v[i];

  return M;
}

/*!
 * \brief Sum of elements in the matrix \c m, either along columns or rows
 *
 * <tt>sum(m) = sum(m, 1)</tt> returns a vector where the elements are sum
 * over each column, whereas <tt>sum(m, 2)</tt> returns a vector where the
 * elements are sum over each row.
 */
template<class T>
Vec<T> sum(const Mat<T> &m, int dim = 1)
{
  it_assert((dim == 1) || (dim == 2), "sum: dimension need to be 1 or 2");
  Vec<T> out;

  if (dim == 1) {
    out.set_size(m.cols(), false);

    for (int i = 0; i < m.cols(); i++)
      out(i) = sum(m.get_col(i));
  }
  else {
    out.set_size(m.rows(), false);

    for (int i = 0; i < m.rows(); i++)
      out(i) = sum(m.get_row(i));
  }

  return out;
}


//! Sum of all elements in the given matrix. Fast version of sum(sum(X))
template<class T>
T sumsum(const Mat<T> &X)
{
  const T * X_data = X._data();
  const int X_datasize = X._datasize();
  T acc = 0;

  for (int i = 0;i < X_datasize;i++)
    acc += X_data[i];

  return acc;
}


//! Sum of square of the elements in a vector
template<class T>
T sum_sqr(const Vec<T> &v)
{
  T M = 0;

  for (int i = 0; i < v.length(); i++)
    M += v[i] * v[i];

  return M;
}

/*!
 * \brief Sum of the square of elements in the matrix \c m
 *
 * <tt>sum(m) = sum(m, 1)</tt> returns a vector where the elements are sum
 * squared over each column, whereas <tt>sum(m, 2)</tt> returns a vector
 * where the elements are sum squared over each row
 */
template<class T>
Vec<T> sum_sqr(const Mat<T> &m, int dim = 1)
{
  it_assert((dim == 1) || (dim == 2), "sum_sqr: dimension need to be 1 or 2");
  Vec<T> out;

  if (dim == 1) {
    out.set_size(m.cols(), false);

    for (int i = 0; i < m.cols(); i++)
      out(i) = sum_sqr(m.get_col(i));
  }
  else {
    out.set_size(m.rows(), false);

    for (int i = 0; i < m.rows(); i++)
      out(i) = sum_sqr(m.get_row(i));
  }

  return out;
}

//! Cumulative sum of all elements in the vector
template<class T>
Vec<T> cumsum(const Vec<T> &v)
{
  Vec<T> out(v.size());

  out(0) = v(0);
  for (int i = 1; i < v.size(); i++)
    out(i) = out(i - 1) + v(i);

  return out;
}

/*!
 * \brief Cumulative sum of elements in the matrix \c m
 *
 * <tt>cumsum(m) = cumsum(m, 1)</tt> returns a matrix where the elements
 * are sums over each column, whereas <tt>cumsum(m, 2)</tt> returns a
 * matrix where the elements are sums over each row
 */
template<class T>
Mat<T> cumsum(const Mat<T> &m, int dim = 1)
{
  it_assert((dim == 1) || (dim == 2), "cumsum: dimension need to be 1 or 2");
  Mat<T> out(m.rows(), m.cols());

  if (dim == 1) {
    for (int i = 0; i < m.cols(); i++)
      out.set_col(i, cumsum(m.get_col(i)));
  }
  else {
    for (int i = 0; i < m.rows(); i++)
      out.set_row(i, cumsum(m.get_row(i)));
  }

  return out;
}

//! The product of all elements in the vector
template<class T>
T prod(const Vec<T> &v)
{
  it_assert(v.size() >= 1, "prod: size of vector should be at least 1");
  T out = v(0);

  for (int i = 1; i < v.size(); i++)
    out *= v(i);

  return out;
}

/*!
 * \brief Product of elements in the matrix \c m
 *
 * <tt>prod(m) = prod(m, 1)</tt> returns a vector where the elements are
 * products over each column, whereas <tt>prod(m, 2)</tt> returns a vector
 * where the elements are products over each row
 */
template<class T>
Vec<T> prod(const Mat<T> &m, int dim = 1)
{
  it_assert((dim == 1) || (dim == 2), "prod: dimension need to be 1 or 2");
  Vec<T> out(m.cols());

  if (dim == 1) {
    it_assert((m.cols() >= 1) && (m.rows() >= 1),
              "prod: number of columns should be at least 1");
    out.set_size(m.cols(), false);

    for (int i = 0; i < m.cols(); i++)
      out(i) = prod(m.get_col(i));
  }
  else {
    it_assert((m.cols() >= 1) && (m.rows() >= 1),
              "prod: number of rows should be at least 1");
    out.set_size(m.rows(), false);

    for (int i = 0; i < m.rows(); i++)
      out(i) = prod(m.get_row(i));
  }
  return out;
}

//! Vector cross product. Vectors need to be of size 3
template<class T>
Vec<T> cross(const Vec<T> &v1, const Vec<T> &v2)
{
  it_assert((v1.size() == 3) && (v2.size() == 3),
            "cross: vectors should be of size 3");

  Vec<T> r(3);

  r(0) = v1(1) * v2(2) - v1(2) * v2(1);
  r(1) = v1(2) * v2(0) - v1(0) * v2(2);
  r(2) = v1(0) * v2(1) - v1(1) * v2(0);

  return r;
}


//! Zero-pad a vector to size n
template<class T>
Vec<T> zero_pad(const Vec<T> &v, int n)
{
  it_assert(n >= v.size(), "zero_pad() cannot shrink the vector!");
  Vec<T> v2(n);
  v2.set_subvector(0, v);
  if (n > v.size())
    v2.set_subvector(v.size(), n - 1, T(0));

  return v2;
}

//! Zero-pad a vector to the nearest greater power of two
template<class T>
Vec<T> zero_pad(const Vec<T> &v)
{
  int n = pow2i(levels2bits(v.size()));

  return (n == v.size()) ? v : zero_pad(v, n);
}

//! Zero-pad a matrix to size rows x cols
template<class T>
Mat<T> zero_pad(const Mat<T> &m, int rows, int cols)
{
  it_assert((rows >= m.rows()) && (cols >= m.cols()),
            "zero_pad() cannot shrink the matrix!");
  Mat<T> m2(rows, cols);
  m2.set_submatrix(0, 0, m);
  if (cols > m.cols()) // Zero
    m2.set_submatrix(0, m.rows() - 1, m.cols(), cols - 1, T(0));
  if (rows > m.rows()) // Zero
    m2.set_submatrix(m.rows(), rows - 1, 0, cols - 1, T(0));

  return m2;
}


//! Return zero if indexing outside the vector \c v otherwise return the
//! element \c index
template<class T>
T index_zero_pad(const Vec<T> &v, const int index)
{
  if (index >= 0 && index < v.size())
    return v(index);
  else
    return T(0);
}


//! Transposition of the matrix \c m returning the transposed matrix in \c out
template<class T>
void transpose(const Mat<T> &m, Mat<T> &out) { out = m.T(); }

//! Transposition of the matrix \c m
template<class T>
Mat<T> transpose(const Mat<T> &m) { return m.T(); }


//! Hermitian transpose (complex conjugate transpose) of the matrix \c m
//! returning the transposed matrix in \c out
template<class T>
void hermitian_transpose(const Mat<T> &m, Mat<T> &out) { out = m.H(); }

//! Hermitian transpose (complex conjugate transpose) of the matrix \c m
template<class T>
Mat<T> hermitian_transpose(const Mat<T> &m) { return m.H(); }



/*!
 * \brief Returns true if matrix \c X is hermitian, false otherwise
 * \author M. Szalay
 *
 * A square matrix \f$\mathbf{X}\f$ is hermitian if
 * \f[
 * \mathbf{X} = \mathbf{X}^H
 * \f]
 */
template<class Num_T>
bool is_hermitian(const Mat<Num_T>& X)
{

  if (X == X.H())
    return true;
  else
    return false;
}

/*!
 * \brief Returns true if matrix \c X is unitary, false otherwise
 * \author M. Szalay
 *
 * A square matrix \f$\mathbf{X}\f$ is unitary if
 * \f[
 * \mathbf{X}^H = \mathbf{X}^{-1}
 * \f]
 */
template<class Num_T>
bool is_unitary(const Mat<Num_T>& X)
{

  if (inv(X) == X.H())
    return true;
  else
    return false;
}


/*!
 * \relates Vec
 * \brief Creates a vector with \c n copies of the vector \c v
 * \author Martin Senst
 *
 * \param v Vector to be repeated
 * \param n Number of times to repeat \c v
 */
template<class T>
Vec<T> repmat(const Vec<T> &v, int n)
{
  it_assert(n > 0, "repmat(): Wrong repetition parameter");
  int data_length = v.length();
  it_assert(data_length > 0, "repmat(): Input vector can not be empty");
  Vec<T> assembly(data_length * n);
  for (int j = 0; j < n; ++j) {
    assembly.set_subvector(j * data_length, v);
  }
  return assembly;
}


/*!
 * \relates Mat
 * \brief Creates a matrix with \c m by \c n copies of the matrix \c data
 * \author Mark Dobossy
 *
 * \param data Matrix to be repeated
 * \param m Number of times to repeat data vertically
 * \param n Number of times to repeat data horizontally
 */
template<class T>
Mat<T> repmat(const Mat<T> &data, int m, int n)
{
  it_assert((m > 0) && (n > 0), "repmat(): Wrong repetition parameters");
  int data_rows = data.rows();
  int data_cols = data.cols();
  it_assert((data_rows > 0) && (data_cols > 0), "repmat(): Input matrix can "
            "not be empty");
  Mat<T> assembly(data_rows*m, data_cols*n);
  for (int i = 0; i < m; ++i) {
    for (int j = 0; j < n; ++j) {
      assembly.set_submatrix(i*data_rows, j*data_cols, data);
    }
  }
  return assembly;
}

/*!
 * \relates Mat
 * \brief Returns a matrix with \c m by \c n copies of the vector \c data
 * \author Adam Piatyszek
 *
 * \param v Vector to be repeated
 * \param m Number of times to repeat data vertically
 * \param n Number of times to repeat data horizontally
 * \param transpose Specifies the input vector orientation (column vector
 * by default)
 */
template<class T> inline
Mat<T> repmat(const Vec<T> &v, int m, int n, bool transpose = false)
{
  return repmat((transpose ? v.T() : Mat<T>(v)), m, n);
}


/*!
 * \brief Computes the Kronecker product of two matrices
 *
 * <tt>K = kron(X, Y)</tt> returns the Kronecker tensor product of \c X
 * and \c Y. The result is a large array formed by taking all possible
 * products between the elements of \c X and those of \c Y. If \c X is
 * <tt>(m x n)</tt> and \c Y is <tt>(p x q)</tt>, then <tt>kron(X, Y)</tt>
 * is <tt>(m*p x n*q)</tt>.
 *
 * \author Adam Piatyszek
 */
template<class Num_T>
Mat<Num_T> kron(const Mat<Num_T>& X, const Mat<Num_T>& Y)
{
  Mat<Num_T> result(X.rows() * Y.rows(), X.cols() * Y.cols());

  for (int i = 0; i < X.rows(); i++)
    for (int j = 0; j < X.cols(); j++)
      result.set_submatrix(i * Y.rows(), j * Y.cols(), X(i, j) * Y);

  return result;
}


/*!
 * \brief Square root of the complex square matrix \c A
 *
 * This function computes the matrix square root of the complex square
 * matrix \c A. The implementation is based on the Matlab/Octave \c
 * sqrtm() function.
 *
 * Ref: N. J. Higham, "Numerical Analysis Report No. 336", Manchester
 * Centre for Computational Mathematics, Manchester, England, January 1999
 *
 * \author Adam Piatyszek
 */
ITPP_EXPORT cmat sqrtm(const cmat& A);

/*!
 * \brief Square root of the real square matrix \c A
 *
 * This function computes the matrix square root of the real square matrix
 * \c A. Please note that the returned matrix is complex. The
 * implementation is based on the Matlab/Octave \c sqrtm() function.
 *
 * Ref: N. J. Higham, "Numerical Analysis Report No. 336", Manchester
 * Centre for Computational Mathematics, Manchester, England, January 1999
 *
 * \author Adam Piatyszek
 */
ITPP_EXPORT cmat sqrtm(const mat& A);


/*!
 * \brief Calculate the rank of matrix \c m
 * \author Martin Senst
 *
 * \param m Input matrix
 * \param tol Tolerance used for comparing the singular values with zero.
 *            If negative, it is automatically determined.
 */
template<class T>
int rank(const Mat<T> &m, double tol = -1.0)
{
  int rows = m.rows();
  int cols = m.cols();
  if ((rows == 0) || (cols == 0))
    return 0;

  vec sing_val = svd(m);

  if (tol < 0.0) { // Calculate default tolerance
    tol = eps * sing_val(0) * (rows > cols ? rows : cols);
  }

  // Count number of nonzero singular values
  int r = 0;
  while ((r < sing_val.length()) && (sing_val(r) > tol)) {
    r++;
  }

  return r;
}

//! Specialisation of rank() function
template<> inline
int rank(const imat &m, double tol)
{
  return rank(to_mat(m), tol);
}

//! Specialisation of rank() function
template<> inline
int rank(const smat &m, double tol)
{
  return rank(to_mat(m), tol);
}

//! Specialisation of rank() function
template<> inline
int rank(const bmat &, double)
{
  it_error("rank(bmat): Function not implemented for GF(2) algebra");
  return 0;
}

//!@}



// -------------------- Diagonal matrix functions -------------------------

//! \addtogroup diag
//!@{

/*!
 * \brief Create a diagonal matrix using vector \c v as its diagonal
 *
 * All other matrix elements except the ones on its diagonal are set to
 * zero. An optional parameter \c K can be used to shift the diagonal in
 * the resulting matrix. By default \c K is equal to zero.
 *
 * The size of the diagonal matrix will be \f$n+|K| \times n+|K|\f$, where
 * \f$n\f$ is the length of the input vector \c v.
 */
template<class T>
Mat<T> diag(const Vec<T> &v, const int K = 0)
{
  Mat<T> m(v.size() + std::abs(K), v.size() + std::abs(K));
  m = T(0);
  if (K > 0)
    for (int i = v.size() - 1; i >= 0; i--)
      m(i, i + K) = v(i);
  else
    for (int i = v.size() - 1; i >= 0; i--)
      m(i - K, i) = v(i);

  return m;
}

/*!
 * \brief Create a diagonal matrix using vector \c v as its diagonal
 *
 * All other matrix elements except the ones on its diagonal are set to
 * zero.
 *
 * The size of the diagonal matrix will be \f$n \times n\f$, where \f$n\f$
 * is the length of the input vector \c v.
 */
template<class T>
void diag(const Vec<T> &v, Mat<T> &m)
{
  m.set_size(v.size(), v.size(), false);
  m = T(0);
  for (int i = v.size() - 1; i >= 0; i--)
    m(i, i) = v(i);
}

/*!
 * \brief Get the diagonal elements of the input matrix \c m
 *
 * The size of the output vector with diagonal elements will be
 * \f$n = min(r, c)\f$, where \f$r \times c\f$ are the dimensions of
 * matrix \c m.
*/
template<class T>
Vec<T> diag(const Mat<T> &m)
{
  Vec<T> t(std::min(m.rows(), m.cols()));

  for (int i = 0; i < t.size(); i++)
    t(i) = m(i, i);

  return t;
}

/*!
  \brief Returns a matrix with the elements of the input vector \c main on
  the diagonal and the elements of the input vector \c sup on the diagonal
  row above.

  If the number of elements in the vector \c main is \f$n\f$, then the
  number of elements in the input vector \c sup must be \f$n-1\f$. The
  size of the return matrix will be \f$n \times n\f$.
*/
template<class T>
Mat<T> bidiag(const Vec<T> &main, const Vec<T> &sup)
{
  it_assert(main.size() == sup.size() + 1, "bidiag()");

  int n = main.size();
  Mat<T> m(n, n);
  m = T(0);
  for (int i = 0; i < n - 1; i++) {
    m(i, i) = main(i);
    m(i, i + 1) = sup(i);
  }
  m(n - 1, n - 1) = main(n - 1);

  return m;
}

/*!
  \brief Returns in the output variable \c m a matrix with the elements of
  the input vector \c main on the diagonal and the elements of the input
  vector \c sup on the diagonal row above.

  If the number of elements in the vector \c main is \f$n\f$, then the
  number of elements in the input vector \c sup must be \f$n-1\f$. The
  size of the output matrix \c m will be \f$n \times n\f$.
*/
template<class T>
void bidiag(const Vec<T> &main, const Vec<T> &sup, Mat<T> &m)
{
  it_assert(main.size() == sup.size() + 1, "bidiag()");

  int n = main.size();
  m.set_size(n, n);
  m = T(0);
  for (int i = 0; i < n - 1; i++) {
    m(i, i) = main(i);
    m(i, i + 1) = sup(i);
  }
  m(n - 1, n - 1) = main(n - 1);
}

/*!
  \brief Returns the main diagonal and the diagonal row above in the two
  output vectors \c main and \c sup.

  The input matrix \c in must be a square \f$n \times n\f$ matrix. The
  length of the output vector \c main will be \f$n\f$ and the length of
  the output vector \c sup will be \f$n-1\f$.
*/
template<class T>
void bidiag(const Mat<T> &m, Vec<T> &main, Vec<T> &sup)
{
  it_assert(m.rows() == m.cols(), "bidiag(): Matrix must be square!");

  int n = m.cols();
  main.set_size(n);
  sup.set_size(n - 1);
  for (int i = 0; i < n - 1; i++) {
    main(i) = m(i, i);
    sup(i) = m(i, i + 1);
  }
  main(n - 1) = m(n - 1, n - 1);
}

/*!
  \brief Returns a matrix with the elements of \c main on the diagonal,
  the elements of \c sup on the diagonal row above, and the elements of \c
  sub on the diagonal row below.

  If the length of the input vector \c main is \f$n\f$ then the lengths of
  the vectors \c sup and \c sub must equal \f$n-1\f$. The size of the
  return matrix will be \f$n \times n\f$.
*/
template<class T>
Mat<T> tridiag(const Vec<T> &main, const Vec<T> &sup, const Vec<T> &sub)
{
  it_assert(main.size() == sup.size() + 1 && main.size() == sub.size() + 1, "bidiag()");

  int n = main.size();
  Mat<T> m(n, n);
  m = T(0);
  for (int i = 0; i < n - 1; i++) {
    m(i, i) = main(i);
    m(i, i + 1) = sup(i);
    m(i + 1, i) = sub(i);
  }
  m(n - 1, n - 1) = main(n - 1);

  return m;
}

/*!
  \brief Returns in the output matrix \c m a matrix with the elements of
  \c main on the diagonal, the elements of \c sup on the diagonal row
  above, and the elements of \c sub on the diagonal row below.

  If the length of the input vector \c main is \f$n\f$ then the lengths of
  the vectors \c sup and \c sub must equal \f$n-1\f$. The size of the
  output matrix \c m will be \f$n \times n\f$.
*/
template<class T>
void tridiag(const Vec<T> &main, const Vec<T> &sup, const Vec<T> &sub, Mat<T> &m)
{
  it_assert(main.size() == sup.size() + 1 && main.size() == sub.size() + 1, "bidiag()");

  int n = main.size();
  m.set_size(n, n);
  m = T(0);
  for (int i = 0; i < n - 1; i++) {
    m(i, i) = main(i);
    m(i, i + 1) = sup(i);
    m(i + 1, i) = sub(i);
  }
  m(n - 1, n - 1) = main(n - 1);
}

/*!
  \brief Returns the main diagonal, the diagonal row above, and the
  diagonal row below int the output vectors \c main, \c sup, and \c sub.

  The input matrix \c m must be a square \f$n \times n\f$ matrix. The
  length of the output vector \c main will be \f$n\f$ and the length of
  the output vectors \c sup and \c sup will be \f$n-1\f$.
*/
template<class T>
void tridiag(const Mat<T> &m, Vec<T> &main, Vec<T> &sup, Vec<T> &sub)
{
  it_assert(m.rows() == m.cols(), "tridiag(): Matrix must be square!");

  int n = m.cols();
  main.set_size(n);
  sup.set_size(n - 1);
  sub.set_size(n - 1);
  for (int i = 0; i < n - 1; i++) {
    main(i) = m(i, i);
    sup(i) = m(i, i + 1);
    sub(i) = m(i + 1, i);
  }
  main(n - 1) = m(n - 1, n - 1);
}


/*!
  \brief The trace of the matrix \c m, i.e. the sum of the diagonal elements.
*/
template<class T>
T trace(const Mat<T> &m)
{
  return sum(diag(m));
}

//!@}


// ----------------- reshaping vectors and matrices ------------------------

//! \addtogroup reshaping
//!@{

//! Reverse the input vector
template<class T>
Vec<T> reverse(const Vec<T> &in)
{
  int i, s = in.length();

  Vec<T> out(s);
  for (i = 0;i < s;i++)
    out[i] = in[s-1-i];
  return out;
}

//! Row vectorize the matrix [(0,0) (0,1) ... (N-1,N-2) (N-1,N-1)]
template<class T>
Vec<T> rvectorize(const Mat<T> &m)
{
  int i, j, n = 0, r = m.rows(), c = m.cols();
  Vec<T> v(r * c);

  for (i = 0; i < r; i++)
    for (j = 0; j < c; j++)
      v(n++) = m(i, j);

  return v;
}

//! Column vectorize the matrix [(0,0) (1,0) ... (N-2,N-1) (N-1,N-1)]
template<class T>
Vec<T> cvectorize(const Mat<T> &m)
{
  int i, j, n = 0, r = m.rows(), c = m.cols();
  Vec<T> v(r * c);

  for (j = 0; j < c; j++)
    for (i = 0; i < r; i++)
      v(n++) = m(i, j);

  return v;
}

/*!
  \brief Reshape the matrix into an rows*cols matrix

  The data is taken columnwise from the original matrix and written
  columnwise into the new matrix.
*/
template<class T>
Mat<T> reshape(const Mat<T> &m, int rows, int cols)
{
  it_assert_debug(m.rows()*m.cols() == rows*cols, "Mat<T>::reshape: Sizes must match");
  Mat<T> temp(rows, cols);
  int i, j, ii = 0, jj = 0;
  for (j = 0; j < m.cols(); j++) {
    for (i = 0; i < m.rows(); i++) {
      temp(ii++, jj) = m(i, j);
      if (ii == rows) {
        jj++;
        ii = 0;
      }
    }
  }
  return temp;
}

/*!
  \brief Reshape the vector into an rows*cols matrix

  The data is element by element from the vector and written columnwise
  into the new matrix.
*/
template<class T>
Mat<T> reshape(const Vec<T> &v, int rows, int cols)
{
  it_assert_debug(v.size() == rows*cols, "Mat<T>::reshape: Sizes must match");
  Mat<T> temp(rows, cols);
  int i, j, ii = 0;
  for (j = 0; j < cols; j++) {
    for (i = 0; i < rows; i++) {
      temp(i, j) = v(ii++);
    }
  }
  return temp;
}

//!@}


//! Returns \a true if all elements are ones and \a false otherwise
ITPP_EXPORT bool all(const bvec &testvec);
//! Returns \a true if any element is one and \a false otherwise
ITPP_EXPORT bool any(const bvec &testvec);

//! \cond

// ----------------------------------------------------------------------
// Instantiations
// ----------------------------------------------------------------------

ITPP_EXPORT_TEMPLATE template ITPP_EXPORT int length(const vec &v);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT int length(const cvec &v);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT int length(const svec &v);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT int length(const ivec &v);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT int length(const bvec &v);

ITPP_EXPORT_TEMPLATE template ITPP_EXPORT double sum(const vec &v);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT std::complex<double> sum(const cvec &v);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT short sum(const svec &v);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT int sum(const ivec &v);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT bin sum(const bvec &v);

ITPP_EXPORT_TEMPLATE template ITPP_EXPORT double sum_sqr(const vec &v);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT std::complex<double> sum_sqr(const cvec &v);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT short sum_sqr(const svec &v);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT int sum_sqr(const ivec &v);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT bin sum_sqr(const bvec &v);

ITPP_EXPORT_TEMPLATE template ITPP_EXPORT vec cumsum(const vec &v);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT cvec cumsum(const cvec &v);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT svec cumsum(const svec &v);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT ivec cumsum(const ivec &v);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT bvec cumsum(const bvec &v);

ITPP_EXPORT_TEMPLATE template ITPP_EXPORT double prod(const vec &v);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT std::complex<double> prod(const cvec &v);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT short prod(const svec &v);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT int prod(const ivec &v);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT bin prod(const bvec &v);

ITPP_EXPORT_TEMPLATE template ITPP_EXPORT vec cross(const vec &v1, const vec &v2);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT cvec cross(const cvec &v1, const cvec &v2);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT ivec cross(const ivec &v1, const ivec &v2);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT svec cross(const svec &v1, const svec &v2);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT bvec cross(const bvec &v1, const bvec &v2);

ITPP_EXPORT_TEMPLATE template ITPP_EXPORT vec reverse(const vec &in);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT cvec reverse(const cvec &in);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT svec reverse(const svec &in);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT ivec reverse(const ivec &in);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT bvec reverse(const bvec &in);

ITPP_EXPORT_TEMPLATE template ITPP_EXPORT vec zero_pad(const vec &v, int n);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT cvec zero_pad(const cvec &v, int n);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT ivec zero_pad(const ivec &v, int n);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT svec zero_pad(const svec &v, int n);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT bvec zero_pad(const bvec &v, int n);

ITPP_EXPORT_TEMPLATE template ITPP_EXPORT vec zero_pad(const vec &v);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT cvec zero_pad(const cvec &v);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT ivec zero_pad(const ivec &v);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT svec zero_pad(const svec &v);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT bvec zero_pad(const bvec &v);

ITPP_EXPORT_TEMPLATE template ITPP_EXPORT mat zero_pad(const mat &, int, int);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT cmat zero_pad(const cmat &, int, int);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT imat zero_pad(const imat &, int, int);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT smat zero_pad(const smat &, int, int);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT bmat zero_pad(const bmat &, int, int);

ITPP_EXPORT_TEMPLATE template ITPP_EXPORT vec sum(const mat &m, int dim);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT cvec sum(const cmat &m, int dim);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT svec sum(const smat &m, int dim);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT ivec sum(const imat &m, int dim);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT bvec sum(const bmat &m, int dim);

ITPP_EXPORT_TEMPLATE template ITPP_EXPORT double sumsum(const mat &X);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT std::complex<double> sumsum(const cmat &X);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT short sumsum(const smat &X);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT int sumsum(const imat &X);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT bin sumsum(const bmat &X);

ITPP_EXPORT_TEMPLATE template ITPP_EXPORT vec sum_sqr(const mat & m, int dim);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT cvec sum_sqr(const cmat &m, int dim);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT svec sum_sqr(const smat &m, int dim);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT ivec sum_sqr(const imat &m, int dim);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT bvec sum_sqr(const bmat &m, int dim);

ITPP_EXPORT_TEMPLATE template ITPP_EXPORT mat cumsum(const mat &m, int dim);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT cmat cumsum(const cmat &m, int dim);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT smat cumsum(const smat &m, int dim);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT imat cumsum(const imat &m, int dim);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT bmat cumsum(const bmat &m, int dim);

ITPP_EXPORT_TEMPLATE template ITPP_EXPORT vec prod(const mat &m, int dim);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT cvec prod(const cmat &v, int dim);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT svec prod(const smat &m, int dim);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT ivec prod(const imat &m, int dim);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT bvec prod(const bmat &m, int dim);

ITPP_EXPORT_TEMPLATE template ITPP_EXPORT vec diag(const mat &in);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT cvec diag(const cmat &in);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT void diag(const vec &in, mat &m);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT void diag(const cvec &in, cmat &m);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT mat diag(const vec &v, const int K);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT cmat diag(const cvec &v, const int K);

ITPP_EXPORT_TEMPLATE template ITPP_EXPORT mat bidiag(const vec &, const vec &);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT cmat bidiag(const cvec &, const cvec &);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT void bidiag(const vec &, const vec &, mat &);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT void bidiag(const cvec &, const cvec &, cmat &);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT void bidiag(const mat &, vec &, vec &);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT void bidiag(const cmat &, cvec &, cvec &);

ITPP_EXPORT_TEMPLATE template ITPP_EXPORT mat tridiag(const vec &main, const vec &, const vec &);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT cmat tridiag(const cvec &main, const cvec &, const cvec &);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT void tridiag(const vec &main, const vec &, const vec &, mat &);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT void tridiag(const cvec &main, const cvec &, const cvec &, cmat &);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT void tridiag(const mat &m, vec &, vec &, vec &);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT void tridiag(const cmat &m, cvec &, cvec &, cvec &);

ITPP_EXPORT_TEMPLATE template ITPP_EXPORT double trace(const mat &in);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT std::complex<double> trace(const cmat &in);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT short trace(const smat &in);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT int trace(const imat &in);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT bin trace(const bmat &in);

ITPP_EXPORT_TEMPLATE template ITPP_EXPORT void transpose(const mat &m, mat &out);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT void transpose(const cmat &m, cmat &out);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT void transpose(const smat &m, smat &out);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT void transpose(const imat &m, imat &out);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT void transpose(const bmat &m, bmat &out);

ITPP_EXPORT_TEMPLATE template ITPP_EXPORT mat transpose(const mat &m);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT cmat transpose(const cmat &m);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT smat transpose(const smat &m);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT imat transpose(const imat &m);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT bmat transpose(const bmat &m);

ITPP_EXPORT_TEMPLATE template ITPP_EXPORT void hermitian_transpose(const mat &m, mat &out);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT void hermitian_transpose(const cmat &m, cmat &out);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT void hermitian_transpose(const smat &m, smat &out);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT void hermitian_transpose(const imat &m, imat &out);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT void hermitian_transpose(const bmat &m, bmat &out);

ITPP_EXPORT_TEMPLATE template ITPP_EXPORT mat hermitian_transpose(const mat &m);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT cmat hermitian_transpose(const cmat &m);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT smat hermitian_transpose(const smat &m);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT imat hermitian_transpose(const imat &m);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT bmat hermitian_transpose(const bmat &m);

ITPP_EXPORT_TEMPLATE template ITPP_EXPORT bool is_hermitian(const mat &X);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT bool is_hermitian(const cmat &X);

ITPP_EXPORT_TEMPLATE template ITPP_EXPORT bool is_unitary(const mat &X);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT bool is_unitary(const cmat &X);

ITPP_EXPORT_TEMPLATE template ITPP_EXPORT vec rvectorize(const mat &m);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT cvec rvectorize(const cmat &m);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT ivec rvectorize(const imat &m);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT svec rvectorize(const smat &m);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT bvec rvectorize(const bmat &m);

ITPP_EXPORT_TEMPLATE template ITPP_EXPORT vec cvectorize(const mat &m);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT cvec cvectorize(const cmat &m);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT ivec cvectorize(const imat &m);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT svec cvectorize(const smat &m);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT bvec cvectorize(const bmat &m);

ITPP_EXPORT_TEMPLATE template ITPP_EXPORT mat reshape(const mat &m, int rows, int cols);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT cmat reshape(const cmat &m, int rows, int cols);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT imat reshape(const imat &m, int rows, int cols);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT smat reshape(const smat &m, int rows, int cols);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT bmat reshape(const bmat &m, int rows, int cols);

ITPP_EXPORT_TEMPLATE template ITPP_EXPORT mat reshape(const vec &m, int rows, int cols);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT cmat reshape(const cvec &m, int rows, int cols);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT imat reshape(const ivec &m, int rows, int cols);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT smat reshape(const svec &m, int rows, int cols);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT bmat reshape(const bvec &m, int rows, int cols);

ITPP_EXPORT_TEMPLATE template ITPP_EXPORT mat kron(const mat &X, const mat &Y);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT cmat kron(const cmat &X, const cmat &Y);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT imat kron(const imat &X, const imat &Y);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT smat kron(const smat &X, const smat &Y);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT bmat kron(const bmat &X, const bmat &Y);

ITPP_EXPORT_TEMPLATE template ITPP_EXPORT vec repmat(const vec &v, int n);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT cvec repmat(const cvec &v, int n);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT ivec repmat(const ivec &v, int n);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT svec repmat(const svec &v, int n);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT bvec repmat(const bvec &v, int n);

ITPP_EXPORT_TEMPLATE template ITPP_EXPORT mat repmat(const vec &v, int m, int n, bool transpose);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT cmat repmat(const cvec &v, int m, int n, bool transpose);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT imat repmat(const ivec &v, int m, int n, bool transpose);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT smat repmat(const svec &v, int m, int n, bool transpose);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT bmat repmat(const bvec &v, int m, int n, bool transpose);

ITPP_EXPORT_TEMPLATE template ITPP_EXPORT mat repmat(const mat &data, int m, int n);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT cmat repmat(const cmat &data, int m, int n);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT imat repmat(const imat &data, int m, int n);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT smat repmat(const smat &data, int m, int n);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT bmat repmat(const bmat &data, int m, int n);

//! \endcond

} // namespace itpp

#endif // #ifndef MATFUNC_H