This file is indexed.

/usr/include/itpp/comm/galois.h is in libitpp-dev 4.3.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
/*!
 * \file
 * \brief Definitions of Galois Field algebra classes and functions
 * \author Tony Ottosson
 *
 * -------------------------------------------------------------------------
 *
 * Copyright (C) 1995-2010  (see AUTHORS file for a list of contributors)
 *
 * This file is part of IT++ - a C++ library of mathematical, signal
 * processing, speech processing, and communications classes and functions.
 *
 * IT++ is free software: you can redistribute it and/or modify it under the
 * terms of the GNU General Public License as published by the Free Software
 * Foundation, either version 3 of the License, or (at your option) any
 * later version.
 *
 * IT++ is distributed in the hope that it will be useful, but WITHOUT ANY
 * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along
 * with IT++.  If not, see <http://www.gnu.org/licenses/>.
 *
 * -------------------------------------------------------------------------
 */

#ifndef GALOIS_H
#define GALOIS_H

#include <itpp/base/vec.h>
#include <itpp/base/array.h>
#include <itpp/base/binary.h>
#include <itpp/base/converters.h>
#include <itpp/itexports.h>
#include <itpp/base/base_exports.h>

namespace itpp
{

/*!
  \brief Galois Field GF(q).
  \author Tony Ottosson

  Galois field GF(q), where \a q = 2^m. Possible \a m values is \a m = 1,2,...,16.
  Elements are given as exponents of the primitive element \a alpha.
  Observe that the zeroth element are given as "-1". ( log(0)=-Inf ).
  <h3> The following primitve polynomials are used to construct the fields:</h3>
  <ul>
  <li> GF(4): 1+x+x^2 </li>
  <li> GF(8): 1+x+x^3 </li>
  <li> GF(16): 1+x+x^4 </li>
  <li> GF(32): 1+x^2+x^5 </li>
  <li> GF(64): 1+x^2+x^6 </li>
  <li> GF(128): 1+x^3+x^7 </li>
  <li> GF(256): 1+x^2+x^3+x^4+x^8 </li>
  <li> GF(512): 1+x^4+x^9 </li>
  <li> GF(1024): 1+x^3+x^10 </li>
  <li> GF(2^11): 1+x^2+x^11 </li>
  <li> GF(2^12): 1+x+x^4+x^12 </li>
  <li> GF(2^13): 1+x+x^3+x^4+x^13 </li>
  <li> GF(2^14): 1+x+x^3+x^5+x^14 </li>
  <li> GF(2^15): 1+x+x^15 </li>
  <li> GF(2^16): 1+x+x^3+x^12+x^16 </li>
  </ul>

  As indicated it is possible to use this class for binary elements, that is GF(2).
  However, this is less efficient
  in storage (each element take 5 bytes of memory) and in speed.
  If possible use the class BIN instead.
  Observe, also that the element "0" is called "-1" and "1" called "0".
*/
class ITPP_EXPORT GF
{
public:
  //! Constructor
  GF() { m = 0; }
  //! Constructor
  GF(int qvalue) {
    m = 0;
    if (qvalue == 0) // qvalue==0 gives the zeroth element
      value = -1;
    else set_size(qvalue);
  }
  //! Constructor
  GF(int qvalue, int inexp) { m = 0; set(qvalue, inexp); }
  //! Copy constructor
  GF(const GF &ingf) { m = ingf.m; value = ingf.value; }

  //! GF(q) equals \a alpha ^ \a inexp
  void set(int qvalue, int inexp) {
    set_size(qvalue);
    it_assert_debug(inexp >= -1 && inexp < qvalue - 1, "GF::set, out of range");
    value = inexp;
  }
  /*!
    \brief GF(q) equals the element that corresponds to the given vector space.

    The format is (...,c,b,a), where the element x is given as x=...+c*alpha^2+b*alpha+a.
  */
  void set(int qvalue, const bvec &vectorspace);
  //! set q=2^mvalue
  void set_size(int qvalue);
  //! Return q.
  int get_size() const { return ((m != 0) ? q[m] : 0); }
  /*!
    \brief Returns the vector space representation of GF(q).

    The format is (...,c,b,a), where the element x is given as x=...+c*alpha^2+b*alpha+a.
  */
  bvec get_vectorspace() const;
  //! Returns the alpha exponent
  int  get_value() const;
  //! Equality check
  int operator==(const GF &ingf) const;
  //! Not-equality check
  int operator!=(const GF &ingf) const;

  //! GF(q) equals ingf
  void operator=(const GF &ingf);
  //! GF(q) equals alpha^inexp
  void operator=(const int inexp);
  //! sum of two GF(q)
  void operator+=(const GF &ingf);
  //! sum of two GF(q)
  GF operator+(const GF &ingf) const;
  //! Difference of two GF(q), same as sum for q=2^m.
  void operator-=(const GF &ingf);
  //! Difference of two GF(q), same as sum for q=2^m.
  GF operator-(const GF &ingf) const;
  //! product of two GF(q)
  void operator*=(const GF &ingf);
  //! product of two GF(q)
  GF operator*(const GF &ingf) const;
  //! division of two GF(q)
  void operator/=(const GF &ingf);
  //! product of two GF(q)
  GF operator/(const GF &ingf) const;
  //! Output stream for GF(q)
  ITPP_EXPORT friend std::ostream &operator<<(std::ostream &os, const GF &ingf);
  //! Input stream for GF(q)
  ITPP_EXPORT friend std::istream &operator>>(std::istream &is, GF &ingf);
protected:
private:
  char m;
  int value;
  static Array<Array<int> > alphapow;
  static Array<Array<int> > logalpha;
  static ivec q;
};

//! \cond

#if (defined(_MSC_VER) && defined (ITPP_SHARED_LIB))
//MSVC explicitely instantiate required template while building the shared library
template class ITPP_EXPORT Array<GF>;
#endif

//! \endcond

class GFX;

//! Multiplication of GF and GFX
ITPP_EXPORT GFX  operator*(const GF &ingf, const GFX &ingfx);
//! Multiplication of GFX and GF
ITPP_EXPORT GFX  operator*(const GFX &ingfx, const GF &ingf);
//! Division of GFX by GF
ITPP_EXPORT GFX  operator/(const GFX &ingfx, const GF &ingf);
  //! Output stream
ITPP_EXPORT std::ostream &operator<<(std::ostream &os, const GFX &ingfx);
/*!
  \brief Polynomials over GF(q)[x], where q=2^m, m=1,...,16
*/
class ITPP_EXPORT GFX
{
public:
  //! Constructor
  GFX();
  //! Constructor
  GFX(int qvalue);
  //! Constructor
  GFX(int qvalue, int indegree);
  //! Constructor
  GFX(int qvalue, const ivec &invalues);
  //! Constructor
  GFX(int qvalue, char *invalues);
  //! Constructor
  GFX(int qvalue, std::string invalues);
  //! Copy constructor
  GFX(const GFX &ingfx);
  //! Return q.
  int get_size() const;
  //! Return degree of GF(q)[x]
  int get_degree() const;
  /*!
    \brief Resize the polynomial to the given \c indegree. If \c copy is set to true, the old polynomial's coefficients are kept in the new polynomial, otherwise they are set to zero.
  */
  void set_degree(int indegree, bool copy = false);
  //! Return true degree of GF(q)[x]
  int get_true_degree() const;
  //! Set the GF(q)[x] polynomial
  void set(int qvalue, const char *invalues);
  //! Set the GF(q)[x] polynomial
  void set(int qvalue, const std::string invalues);
  //! Set the GF(q)[x] polynomial
  void set(int qvalue, const ivec &invalues);
  //! Set all coefficients to zero.
  void clear();
  //! Acces to individual element in the GF(q)[x] polynomial
  GF operator[](int index) const {
    it_assert_debug(index<=degree, "GFX::op[], out of range");
    return coeffs(index);
  }
  //! Acces to individual element in the GF(q)[x] polynomial
  GF &operator[](int index) {
    it_assert_debug(index<=degree, "GFX::op[], out of range");
    return coeffs(index);
  }
  //! Copy
  void operator=(const GFX &ingfx);
  //! sum of two GF(q)[x]
  void operator+=(const GFX &ingfx);
  //! sum of two GF(q)[x]
  GFX operator+(const GFX &ingfx) const;
  //! Difference of two GF(q), same as sum for q=2^m.
  void operator-=(const GFX &ingfx);
  //! Difference of two GF(q), same as sum for q=2^m.
  GFX operator-(const GFX &ingfx) const;
  //! product of two GF(q)[x]
  void operator*=(const GFX &ingfx);
  //! product of two GF(q)[x]
  GFX operator*(const GFX &ingfx) const;
  //! Evaluate polynom at alpha^inexp
  GF operator()(const GF &ingf);
  //! Multiply a GF element with a GF(q)[x]
  ITPP_EXPORT friend GFX  operator*(const GF &ingf, const GFX &ingfx);
  //! Multiply a GF(q)[x] with a GF element
  ITPP_EXPORT friend GFX  operator*(const GFX &ingfx, const GF &ingf);
  //! Divide a GF(q)[x] with a GF element
  ITPP_EXPORT friend GFX  operator/(const GFX &ingfx, const GF &ingf);
  //! Output stream
  ITPP_EXPORT friend std::ostream &operator<<(std::ostream &os, const GFX &ingfx);
protected:
private:
  int degree, q;
  Array<GF> coeffs;
};

//-------------- Help Functions ------------------
/*!
  \relates GFX
  \brief Int division of GF[q](x) polynomials: m(x) = c(x)/g(x).

  The reminder r(x) is not returned by this function.
*/
ITPP_EXPORT GFX divgfx(const GFX &c, const GFX &g);

/*!
  \relates GFX
  \brief Function that performs int division of gf[q](x) polynomials (a(x)/g(x)) and returns the reminder.
*/
ITPP_EXPORT GFX modgfx(const GFX &a, const GFX &b);


// --------------- Inlines ------------------------
// --------------- class GF -----------------------

inline void GF::set(int qvalue, const bvec &vectorspace)
{
  set_size(qvalue);
  it_assert_debug(vectorspace.length() == m, "GF::set, out of range");
  value = logalpha(m)(bin2dec(vectorspace));
}

inline bvec GF::get_vectorspace() const
{
  bvec temp(m);
  if (value == -1)
    temp = dec2bin(m, 0);
  else
    temp = dec2bin(m, alphapow(m)(value));
  return temp;
}

inline int  GF::get_value() const
{
  return value;
}

inline int GF::operator==(const GF &ingf) const
{
  if (value == -1 && ingf.value == -1)
    return true;
  if (m == ingf.m && value == ingf.value)
    return true;
  else
    return false;
}

inline int GF::operator!=(const GF &ingf) const
{
  GF tmp(*this);
  return !(tmp == ingf);
}

inline void GF::operator=(const GF &ingf)
{
  m = ingf.m;
  value = ingf.value;
}

inline void GF::operator=(const int inexp)
{
  it_assert_debug(m > 0 && inexp >= -1 && inexp < (q[m] - 1), "GF::op=, out of range");
  value = inexp;
}

inline void GF::operator+=(const GF &ingf)
{
  if (value == -1) {
    value = ingf.value;
    m = ingf.m;
  }
  else if (ingf.value != -1) {
    it_assert_debug(ingf.m == m, "GF::op+=, not same field");
    value = logalpha(m)(alphapow(m)(value) ^ alphapow(m)(ingf.value));
  }
}

inline GF GF::operator+(const GF &ingf) const
{
  GF tmp(*this);
  tmp += ingf;
  return tmp;
}

inline void GF::operator-=(const GF &ingf)
{
  (*this) += ingf;
}

inline GF GF::operator-(const GF &ingf) const
{
  GF tmp(*this);
  tmp -= ingf;
  return tmp;
}

inline void GF::operator*=(const GF &ingf)
{
  if (value == -1 || ingf.value == -1)
    value = -1;
  else {
    it_assert_debug(ingf.m == m, "GF::op+=, not same field");
    value = (value + ingf.value) % (q[m] - 1);
  }
}

inline GF GF::operator*(const GF &ingf) const
{
  GF tmp(*this);
  tmp *= ingf;
  return tmp;
}

inline void GF::operator/=(const GF &ingf)
{
  it_assert(ingf.value != -1, "GF::operator/: division by zero element"); // no division by the zeroth element
  if (value == -1)
    value = -1;
  else {
    it_assert_debug(ingf.m == m, "GF::op+=, not same field");
    value = (value - ingf.value + q[m] - 1) % (q[m] - 1);
  }
}

inline GF GF::operator/(const GF &ingf) const
{
  GF tmp(*this);
  tmp /= ingf;
  return tmp;
}

// ------------------ class GFX --------------------
inline GFX::GFX()
{
  degree = -1;
  q = 0;
}

inline GFX::GFX(int qvalue)
{
  it_assert_debug(qvalue >= 0, "GFX::GFX, out of range");
  q = qvalue;
}

inline void GFX::set(int qvalue, const ivec &invalues)
{
  it_assert_debug(qvalue > 0, "GFX::set, out of range");
  degree = invalues.size() - 1;
  coeffs.set_size(degree + 1, false);
  for (int i = 0;i < degree + 1;i++)
    coeffs(i).set(qvalue, invalues(i));
  q = qvalue;
}

inline void GFX::set(int qvalue, const char *invalues)
{
  set(qvalue, ivec(invalues));
}

inline void GFX::set(int qvalue, const std::string invalues)
{
  set(qvalue, invalues.c_str());
}

inline GFX::GFX(int qvalue, int indegree)
{
  it_assert_debug(qvalue > 0 && indegree >= 0, "GFX::GFX, out of range");
  q = qvalue;
  coeffs.set_size(indegree + 1, false);
  degree = indegree;
  for (int i = 0;i < degree + 1;i++)
    coeffs(i).set(q, -1);
}
inline GFX::GFX(int qvalue, const ivec &invalues)
{
  set(qvalue, invalues);
}

inline GFX::GFX(int qvalue, char *invalues)
{
  set(qvalue, invalues);
}

inline GFX::GFX(int qvalue, std::string invalues)
{
  set(qvalue, invalues.c_str());
}

inline GFX::GFX(const GFX &ingfx)
{
  degree = ingfx.degree;
  coeffs = ingfx.coeffs;
  q = ingfx.q;
}

inline int GFX::get_size() const
{
  return q;
}

inline int GFX::get_degree() const
{
  return degree;
}

inline void GFX::set_degree(int indegree, bool copy)
{
  it_assert_debug(indegree >= -1, "GFX::set_degree, out of range");
  coeffs.set_size(indegree + 1, copy);
  degree = indegree;
}

inline int GFX::get_true_degree() const
{
  int i = degree;
  while (coeffs(i).get_value() == -1) {
    i--;
    if (i == -1)
      break;
  }
  return i;
}

inline void GFX::clear()
{
  it_assert_debug(degree >= 0 && q > 0, "GFX::clear, not set");
  for (int i = 0;i < degree + 1;i++)
    coeffs(i).set(q, -1);
}

inline void GFX::operator=(const GFX &ingfx)
{
  degree = ingfx.degree;
  coeffs = ingfx.coeffs;
  q = ingfx.q;
}

inline void GFX::operator+=(const GFX &ingfx)
{
  it_assert_debug(q == ingfx.q, "GFX::op+=, not same field");
  if (ingfx.degree > degree) {
    coeffs.set_size(ingfx.degree + 1, true);
    // set new coefficients to the zeroth element
    for (int j = degree + 1; j < coeffs.size(); j++) { coeffs(j).set(q, -1); }
    degree = ingfx.degree;
  }
  for (int i = 0;i < ingfx.degree + 1;i++) { coeffs(i) += ingfx.coeffs(i); }
}

inline GFX GFX::operator+(const GFX &ingfx) const
{
  GFX tmp(*this);
  tmp += ingfx;
  return tmp;
}

inline void GFX::operator-=(const GFX &ingfx)
{
  (*this) += ingfx;
}

inline GFX GFX::operator-(const GFX &ingfx) const
{
  GFX tmp(*this);
  tmp -= ingfx;
  return tmp;
}

inline void GFX::operator*=(const GFX &ingfx)
{
  it_assert_debug(q == ingfx.q, "GFX::op*=, Not same field");
  int i, j;
  Array<GF> tempcoeffs = coeffs;
  coeffs.set_size(degree + ingfx.degree + 1, false);
  for (j = 0; j < coeffs.size(); j++)
    coeffs(j).set(q, -1); // set coefficients to the zeroth element (log(0)=-Inf=-1)
  for (i = 0;i < degree + 1;i++)
    for (j = 0;j < ingfx.degree + 1;j++)
      coeffs(i + j) += tempcoeffs(i) * ingfx.coeffs(j);
  degree = coeffs.size() - 1;
}

inline GFX GFX::operator*(const GFX &ingfx) const
{
  GFX tmp(*this);
  tmp *= ingfx;
  return tmp;
}

inline GFX operator*(const GF &ingf, const GFX &ingfx)
{
  it_assert_debug(ingf.get_size() == ingfx.q, "GFX::op*, Not same field");
  GFX temp(ingfx);
  for (int i = 0;i < ingfx.degree + 1;i++)
    temp.coeffs(i) *= ingf;
  return temp;
}

inline GFX  operator*(const GFX &ingfx, const GF &ingf)
{
  return ingf*ingfx;
}

inline GFX  operator/(const GFX &ingfx, const GF &ingf)
{
  it_assert_debug(ingf.get_size() == ingfx.q, "GFX::op/, Not same field");
  GFX temp(ingfx);
  for (int i = 0;i < ingfx.degree + 1;i++)
    temp.coeffs(i) /= ingf;
  return temp;
}

inline GF GFX::operator()(const GF &ingf)
{
  it_assert_debug(q == ingf.get_size(), "GFX::op(), Not same field");
  GF temp(coeffs(0)), ingfpower(ingf);
  for (int i = 1; i < degree + 1; i++) {
    temp += coeffs(i) * ingfpower;
    ingfpower *= ingf;
  }
  return temp;
}

} // namespace itpp

#endif // #ifndef GALOIS_H