/usr/include/itpp/optim/newton_search.h is in libitpp-dev 4.3.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 | /*!
* \file
* \brief Newton Search optimization algorithms - header file
* \author Tony Ottosson
*
* -------------------------------------------------------------------------
*
* Copyright (C) 1995-2010 (see AUTHORS file for a list of contributors)
*
* This file is part of IT++ - a C++ library of mathematical, signal
* processing, speech processing, and communications classes and functions.
*
* IT++ is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* IT++ is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along
* with IT++. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef NEWTON_SEARCH_H
#define NEWTON_SEARCH_H
#include <itpp/base/vec.h>
#include <itpp/base/array.h>
#include <limits>
#include <itpp/itexports.h>
#include <itpp/base/base_exports.h>
namespace itpp
{
/*!
\brief Numerical optimization routines
\addtogroup optimization
*/
//@{
//! Newton Search method
enum Newton_Search_Method {BFGS};
/*!
\brief Newton Search
Newton or Quasi-Newton optimization method that try to minimize the objective function \f$f(\mathbf{x})\f$
given an initial guess \f$\mathbf{x}\f$.
The search is stopped when either criterion 1:
\f[
\left\| \mathbf{f}'(\mathbf{x})\right\|_{\infty} \leq \varepsilon_1
\f]
or criterion 2:
\f[
\left\| d\mathbf{x}\right\|_{2} \leq \varepsilon_2 (\varepsilon_2 + \| \mathbf{x} \|_{2} )
\f]
is fulfilled. Another possibility is that the search is stopped when the number of function evaluations
exceeds a threshold (100 per default).
The default update rule for the inverse of the Hessian matrix is the BFGS algorithm with
\f$\varepsilon_1 = 10^{-4}\f$ an \f$\varepsilon_2 = 10^{-8}\f$.
*/
class ITPP_EXPORT Newton_Search
{
public:
//! Default constructor
Newton_Search();
//! Destructor
~Newton_Search() {};
//! Set function pointer
void set_function(double(*function)(const vec&));
//! Set gradient function pointer
void set_gradient(vec(*gradient)(const vec&));
//! Set both function and gradient function pointers
void set_functions(double(*function)(const vec&), vec(*gradient)(const vec&)) { set_function(function); set_gradient(gradient); }
//! Set start point \c x for search and approx inverse Hessian at \c x
void set_start_point(const vec &x, const mat &D);
//! Set start point \c x for search
void set_start_point(const vec &x);
//! Get solution, function value and gradient at solution point
vec get_solution();
//! Do the line search
bool search();
//! Do the line search and return solution
bool search(vec &xn);
//! Set starting point, do the Newton search, and return the solution
bool search(const vec &x0, vec &xn);
//! Set stop criterion values
void set_stop_values(double epsilon_1, double epsilon_2);
//! Return stop value rho
double get_epsilon_1() { return stop_epsilon_1; }
//! Return stop value beta
double get_epsilon_2() { return stop_epsilon_2; }
//! Set max number of function evaluations
void set_max_evaluations(int value);
//! Return max number of function evaluations
int get_max_evaluations() { return max_evaluations; }
//! Set max stepsize
void set_initial_stepsize(double value);
//! Return max number of iterations
double get_initial_stepsize() { return initial_stepsize; }
//! Set Line search method
void set_method(const Newton_Search_Method &method);
//! get function value at solution point
double get_function_value();
//! get value of stop criterion 1 at solution point
double get_stop_1();
//! get value of stop criterion 2 at solution point
double get_stop_2();
//! get number of iterations used to reach solution
int get_no_iterations();
//! get number of function evaluations used to reach solution
int get_no_function_evaluations();
//! enable trace mode
void enable_trace() { trace = true; }
//! disable trace
void disable_trace() { trace = false; }
/*! get trace outputs
\c xvalues are the solutions of every iteration
\c Fvalues are the function values
\c ngvalues are the norm(gradient,inf) values
\c dvalues are the delta values
*/
void get_trace(Array<vec> & xvalues, vec &Fvalues, vec &ngvalues, vec &dvalues);
private:
int n; // dimension of problem, size(x)
double(*f)(const vec&); // function to minimize
vec(*df_dx)(const vec&); // df/dx, gradient of f
// start variables
vec x_start;
mat D_start;
// solution variables
vec x_end;
// trace variables
Array<vec> x_values;
vec F_values, ng_values, Delta_values;
Newton_Search_Method method;
// Parameters
double initial_stepsize; // opts(1)
double stop_epsilon_1; // opts(2)
double stop_epsilon_2; // opt(3)
int max_evaluations; // opts(4)
// output parameters
int no_feval; // number of function evaluations
int no_iter; // number of iterations
double F, ng, nh; // function value, stop_1, stop_2 values at solution point
bool init, finished, trace;
};
//! Line Search method
enum Line_Search_Method {Soft, Exact};
/*!
\brief Line Search
The line search try to minimize the objective function \f$f(\mathbf{x})\f$
along the direction \f$\mathbf{h}\f$ from the current position \f$\mathbf{x}\f$.
Hence we look at
\f[
\varphi(\alpha) = f(\mathbf{x} + \alpha \mathbf{h})
\f]
and try to find an \f$\alpha_s\f$ that minimizes \f$f\f$.
Two variants are used. Either the soft line search (default) or the exact line
search.
The soft line search stops when a point in the acceptable region is found, i.e.
\f[
\phi(\alpha_s) \leq \varphi(0) + \alpha_s \rho \varphi'(0)
\f]
and
\f[
\varphi'(\alpha_s) \geq \beta \varphi'(0),\: \rho < \beta
\f]
Default vales are \f$\rho = 10^{-3}\f$ and \f$\beta = 0.99\f$.
The exact line search
\f[
\| \varphi(\alpha_s)\| \leq \rho \| \varphi'(0) \|
\f]
and
\f[
b-a \leq \beta b,
\f]
where \f$\left[a,b\right]\f$ is the current interval for \f$\alpha_s\f$.
Default vales are \f$\rho = 10^{-3}\f$ and \f$\beta = 10^{-3}\f$.
The exact line search can at least in theory give the exact resutl, but it may require
many extra function evaluations compared to soft line search.
*/
class ITPP_EXPORT Line_Search
{
public:
//! Default constructor
Line_Search();
//! Destructor
~Line_Search() {};
//! Set function pointer
void set_function(double(*function)(const vec&));
//! Set gradient function pointer
void set_gradient(vec(*gradient)(const vec&));
//! Set both function and gradient function pointers
void set_functions(double(*function)(const vec&), vec(*gradient)(const vec&)) { set_function(function); set_gradient(gradient); }
//! Set start point for search
void set_start_point(const vec &x, double F, const vec &g, const vec &h);
//! Get solution, function value and gradient at solution point
void get_solution(vec &xn, double &Fn, vec &gn);
//! Do the line search
bool search();
//! Do the line search and return solution
bool search(vec &xn, double &Fn, vec &gn);
//! Set starting point, do the line search, and return the solution
bool search(const vec &x, double F, const vec &g, const vec &h, vec &xn,
double &Fn, vec &gn);
//! return alpha at solution point, xn = x + alpha h
double get_alpha();
//! return the slope ratio at solution poin, xn
double get_slope_ratio();
//! return number of function evaluations used in search
int get_no_function_evaluations();
//! Set stop criterion values
void set_stop_values(double rho, double beta);
//! Return stop value rho
double get_rho() { return stop_rho; }
//! Return stop value beta
double get_beta() { return stop_beta; }
//! Set max number of iterations
void set_max_iterations(int value);
//! Return max number of iterations
int get_max_iterations() { return max_iterations; }
//! Set max stepsize
void set_max_stepsize(double value);
//! Return max number of iterations
double get_max_stepsize() { return max_stepsize; }
//! Set Line search method
void set_method(const Line_Search_Method &method);
//! enable trace mode
void enable_trace() { trace = true; }
//! disable trace
void disable_trace() { trace = false; }
/*! get trace outputs
\c alphavalues are the solutions of every iteration
\c Fvalues are the function values
\c dFvalues
*/
void get_trace(vec &alphavalues, vec &Fvalues, vec &dFvalues);
private:
int n; // dimension of problem, size(x)
double(*f)(const vec&); // function to minimize
vec(*df_dx)(const vec&); // df/dx, gradient of f
// start variables
vec x_start, g_start, h_start;
double F_start;
// solution variables
vec x_end, g_end;
double F_end;
// trace variables
vec alpha_values, F_values, dF_values;
bool init; // true if functions and starting points are set
bool finished; // true if functions and starting points are set
bool trace; // true if trace is enabled
// Parameters
Line_Search_Method method;
double stop_rho; // opts(2)
double stop_beta; // opts(3)
int max_iterations; // opts(4)
double max_stepsize; // opts(5)
// output parameters
double alpha; // end value of alpha, info(1)
double slope_ratio; // slope ratio at xn, info(2)
int no_feval; // info(3)
};
/*!
\brief Unconstrained minimization
Unconstrained minimization using a Newton or Quasi-Newton optimization method
that try to minimize the objective function \f$f(\mathbf{x})\f$ given an initial guess \f$\mathbf{x}\f$.
The function and the gradient need to be known and supplied.
The default algorithm is a Quasi-Newton search using BFGS updates of the inverse Hessian matrix.
*/
ITPP_EXPORT vec fminunc(double(*function)(const vec&), vec(*gradient)(const vec&), const vec &x0);
//@}
} // namespace itpp
#endif // #ifndef NEWTON_SEARCH_H
|