/usr/share/itpp/pyitpp.py is in libitpp-dev 4.3.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 | # File: pyitpp.py
# Brief: Loads an IT++ itfile content and outputs a dictionary with all variables found.
# Author: Bogdan Cristea
#
# Usage: from pyitpp import itload
# out = itload('fname.it')
#
# This module provides a function for loading itfile content into matrices/scalars
# and outputs all these variables as a dictionary whose keys are variable names as
# found in itfile. This module uses numpy module for matrix operations and numerical types.
# Thus, the provided functionality is similar to itload() function for MATLAB.
#
# -------------------------------------------------------------------------
#
# Copyright (C) 1995-2010 (see AUTHORS file for a list of contributors)
#
# This file is part of IT++ - a C++ library of mathematical, signal
# processing, speech processing, and communications classes and functions.
#
# IT++ is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software
# Foundation, either version 3 of the License, or (at your option) any
# later version.
#
# IT++ is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
# details.
#
# You should have received a copy of the GNU General Public License along
# with IT++. If not, see <http://www.gnu.org/licenses/>.
#
# -------------------------------------------------------------------------
from sys import exit
from os import stat
from os import SEEK_SET
from stat import ST_SIZE
from struct import unpack
from numpy import mat
from numpy import reshape
from numpy.matlib import zeros
#numerical types used for conversions
from numpy import uint8
from numpy import int16
from numpy import int32
from numpy import float32
from numpy import float64
from numpy import complex64
from numpy import complex128
def __fgetstr(fid):
str = ''
while 1:
d = fid.read(1);
if d == '\x00':
break
str = str+d;
return str
def itload(in_file):
try:
f = open(in_file, 'rb')
except IOError:
try:
f = open(in_file+'.it', 'rb')
except IOError:
print 'Cannot open file'
exit()
#get file size
file_size = stat(in_file)[ST_SIZE]
#read IT++ magic string
magic = f.read(4);
if 'IT++' != magic:
print 'Not an IT++ file!'
exit()
#check the IT++ file version
version = f.read(1)
if 3 != ord(version):
print 'Only IT++ file version 3 is supported by this function!'
exit()
out = dict()#use a dictionary to output all tuples read from it file
while 1:
#save current file position
pos = f.tell()
#read header, data, and total block sizes (3*uint64)
header_data_block_sizes = unpack('3Q', f.read(24))
#read current variable name
var_name = __fgetstr(f)
#read current variable type
var_type = __fgetstr(f)
#skip header bytes
f.seek(pos+header_data_block_sizes[0], SEEK_SET)
if len(var_type) == 0: #A deleted entry -> skip it
pass
#scalars
# --- bin ---
elif 'bin' == var_type:
out[var_name] = uint8(unpack('b', f.read(1))[0])
# --- int8 (char) ---
elif 'int8' == var_type:
out[var_name] = unpack('c', f.read(1))[0]
# --- int16 (short) ---
elif 'int16' == var_type:
out[var_name] = int16(unpack('h', f.read(2))[0])
# --- int32 (int) ---
elif 'int32' == var_type:
out[var_name] = int32(unpack('i', f.read(4))[0])
# --- float32 (float) ---
elif 'float32' == var_type:
out[var_name] = float32(unpack('f', f.read(4))[0])
# --- float64 (double) ---
elif 'float64' == var_type:
out[var_name] = float64(unpack('d', f.read(8))[0])
# --- cfloat32 (complex<float>) ---
elif 'cfloat32' == var_type:
real_imag = unpack('2f', f.read(8))
out[var_name] = complex64(complex(real_imag[0], real_imag[1]))
# --- cfloat64 (complex<double>) ---
elif 'cfloat64' == var_type:
real_imag = unpack('2d', f.read(16))
out[var_name] = complex128(complex(real_imag[0], real_imag[1]))
#vectors
# --- bvec ---
elif 'bvec' == var_type:
length = unpack('Q', f.read(8))[0]
fmt = str(length)+'b'
out[var_name] = mat(unpack(fmt, f.read(length)), 'uint8').T#convert to a column vector
# --- string ---
elif 'string' == var_type:
length = unpack('Q', f.read(8))[0]
fmt = str(length)+'c'
out[var_name] = "".join(unpack(fmt, f.read(length)))
# --- svec ---
elif 'svec' == var_type:
length = unpack('Q', f.read(8))[0]
fmt = str(length)+'h'
out[var_name] = mat(unpack(fmt, f.read(length*2)), 'int16').T#convert to a column vector
# --- ivec ---
elif 'ivec' == var_type:
length = unpack('Q', f.read(8))[0]
fmt = str(length)+'i'
out[var_name] = mat(unpack(fmt, f.read(length*4)), 'int32').T#convert to a column vector
# --- fvec ---
elif 'fvec' == var_type:
length = unpack('Q', f.read(8))[0]
fmt = str(length)+'f'
out[var_name] = mat(unpack(fmt, f.read(length*4)), 'float32').T#convert to a column vector
# --- dvec ---
elif 'dvec' == var_type:
length = unpack('Q', f.read(8))[0]
fmt = str(length)+'d'
out[var_name] = mat(unpack(fmt, f.read(length*8)), 'float64').T#convert to a column vector
# --- fcvec ---
elif 'fcvec' == var_type:
length = unpack('Q', f.read(8))[0]
fmt = str(2*length)+'f'
real_imag = mat(unpack(fmt, f.read(2*length*4)), 'float32').T#convert to a column vector
out[var_name] = zeros((length, 1), complex)
for i in range(length):
out[var_name][i,0] = complex64(complex(real_imag[2*i], real_imag[2*i+1]))
# --- dcvec ---
elif 'dcvec' == var_type:
length = unpack('Q', f.read(8))[0]
fmt = str(2*length)+'d'
real_imag = mat(unpack(fmt, f.read(2*length*8)), 'float64').T#convert to a column vector
out[var_name] = zeros((length, 1), complex)
for i in range(length):
out[var_name][i,0] = complex128(complex(real_imag[2*i], real_imag[2*i+1]))
#matrices
# --- bmat ---
elif 'bmat' == var_type:
rows = unpack('Q', f.read(8))[0]
cols = unpack('Q', f.read(8))[0]
fmt = str(rows*cols)+'b'
out[var_name] = reshape(mat(unpack(fmt, f.read(rows*cols)), 'uint8'), (cols, rows)).T
# --- smat ---
elif 'smat' == var_type:
rows = unpack('Q', f.read(8))[0]
cols = unpack('Q', f.read(8))[0]
fmt = str(rows*cols)+'h'
out[var_name] = reshape(mat(unpack(fmt, f.read(rows*cols*2)), 'int16'), (cols, rows)).T
# --- imat ---
elif 'imat' == var_type:
rows = unpack('Q', f.read(8))[0]
cols = unpack('Q', f.read(8))[0]
fmt = str(rows*cols)+'i'
out[var_name] = reshape(mat(unpack(fmt, f.read(rows*cols*4)), 'int32'), (cols, rows)).T
# --- fmat ---
elif 'fmat' == var_type:
rows = unpack('Q', f.read(8))[0]
cols = unpack('Q', f.read(8))[0]
fmt = str(rows*cols)+'f'
out[var_name] = reshape(mat(unpack(fmt, f.read(rows*cols*4)), 'float32'), (cols, rows)).T
# --- dmat ---
elif 'dmat' == var_type:
rows = unpack('Q', f.read(8))[0]
cols = unpack('Q', f.read(8))[0]
fmt = str(rows*cols)+'d'
out[var_name] = reshape(mat(unpack(fmt, f.read(rows*cols*8)), 'float64'), (cols, rows)).T
# --- fcmat ---
elif 'fcmat' == var_type:
rows = unpack('Q', f.read(8))[0]
cols = unpack('Q', f.read(8))[0]
fmt = str(2*rows*cols)+'f'
real_imag = mat(unpack(fmt, f.read(2*rows*cols*4)), 'float32').T
out[var_name] = zeros((rows, cols), complex)
for i in range(rows):
for j in range(cols):
out[var_name] = out[var_name][i,j] = complex(real_imag[2*i+2*rows*j], real_imag[2*i+1+2*rows*j])
# --- dcmat ---
elif 'dcmat' == var_type:
rows = unpack('Q', f.read(8))[0]
cols = unpack('Q', f.read(8))[0]
fmt = str(2*rows*cols)+'d'
real_imag = mat(unpack(fmt, f.read(2*rows*cols*8)), 'float64').T
out[var_name] = zeros((rows, cols), complex)
for i in range(rows):
for j in range(cols):
out[var_name][i,j] = complex(real_imag[2*i+2*rows*j], real_imag[2*i+1+2*rows*j])
#arrays of scalars (implemented as list of scalars)
# --- bArray ---
elif 'bArray' == var_type:
size = unpack('Q', f.read(8))[0]
fmt = str(size)+'b'
out[var_name] = [uint8(n) for n in unpack(fmt, f.read(size))]
# --- sArray ---
elif 'sArray' == var_type:
size = unpack('Q', f.read(8))[0]
fmt = str(size)+'h'
out[var_name] = [int16(n) for n in unpack(fmt, f.read(size*2))]
# --- iArray ---
elif 'iArray' == var_type:
size = unpack('Q', f.read(8))[0]
fmt = str(size)+'i'
out[var_name] = [int32(n) for n in unpack(fmt, f.read(size*4))]
# --- fArray ---
elif 'fArray' == var_type:
size = unpack('Q', f.read(8))[0]
fmt = str(size)+'f'
out[var_name] = [float32(n) for n in unpack(fmt, f.read(size*4))]
# --- dArray ---
elif 'dArray' == var_type:
size = unpack('Q', f.read(8))[0]
fmt = str(size)+'d'
out[var_name] = [float64(n) for n in unpack(fmt, f.read(size*8))]
# --- fcArray ---
elif 'fcArray' == var_type:
size = unpack('Q', f.read(8))[0]
fmt = str(2*size)+'f'
real_imag = unpack(fmt, f.read(2*size*4))
out[var_name] = list()
for i in range(size):
out[var_name].append(complex64(complex(real_imag[2*i], real_imag[2*i+1])))
# --- dcArray ---
elif 'dcArray' == var_type:
size = unpack('Q', f.read(8))[0]
fmt = str(2*size)+'d'
real_imag = unpack(fmt, f.read(2*size*8))
out[var_name] = list()
for i in range(size):
out[var_name].append(complex128(complex(real_imag[2*i], real_imag[2*i+1])))
#arrays of vectors (implemented as list of vectors)
# --- bvecArray ---
elif 'bvecArray' == var_type:
size = unpack('Q', f.read(8))[0]
out[var_name] = list()
for i in range(size):
length = unpack('Q', f.read(8))[0]
fmt = str(length)+'b'
out[var_name].append(mat(unpack(fmt, f.read(length)), 'uint8').T)
# --- svecArray ---
elif 'svecArray' == var_type:
size = unpack('Q', f.read(8))[0]
out[var_name] = list()
for i in range(size):
length = unpack('Q', f.read(8))[0]
fmt = str(length)+'h'
out[var_name].append(mat(unpack(fmt, f.read(length*2)), 'int16').T)
# --- ivecArray ---
elif 'ivecArray' == var_type:
size = unpack('Q', f.read(8))[0]
out[var_name] = list()
for i in range(size):
length = unpack('Q', f.read(8))[0]
fmt = str(length)+'i'
out[var_name].append(mat(unpack(fmt, f.read(length*4)), 'int32').T)
# --- vecArray ---
elif 'vecArray' == var_type:
size = unpack('Q', f.read(8))[0]
out[var_name] = list()
for i in range(size):
length = unpack('Q', f.read(8))[0]
fmt = str(length)+'d'
out[var_name].append(mat(unpack(fmt, f.read(length*8)), 'float64').T)
# --- cvecArray ---
elif 'cvecArray' == var_type:
size = unpack('Q', f.read(8))[0]
out[var_name] = list()
for i in range(size):
length = unpack('Q', f.read(8))[0]
fmt = str(2*length)+'d'
real_imag = unpack(fmt, f.read(2*length*8))
v = zeros((length, 1), complex)
for j in range(length):
v[j,0] = complex128(complex(real_imag[2*j], real_imag[2*j+1]))
out[var_name].append(v)
# --- stringArray ---
elif 'stringArray' == var_type:
size = unpack('Q', f.read(8))[0]
out[var_name] = list()
for i in range(size):
length = unpack('Q', f.read(8))[0]
fmt = str(length)+'c'
out[var_name].append("".join(unpack(fmt, f.read(length))))
#arrays of matrices (implemented as list of matrices)
# --- bmatArray ---
elif 'bmatArray' == var_type:
size = unpack('Q', f.read(8))[0]
out[var_name] = list()
for i in range(size):
rows = unpack('Q', f.read(8))[0]
cols = unpack('Q', f.read(8))[0]
fmt = str(rows*cols)+'b'
out[var_name].append(reshape(mat(unpack(fmt, f.read(rows*cols)), 'uint8'), (cols, rows)).T)
# --- smatArray ---
elif 'smatArray' == var_type:
size = unpack('Q', f.read(8))[0]
out[var_name] = list()
for i in range(size):
rows = unpack('Q', f.read(8))[0]
cols = unpack('Q', f.read(8))[0]
fmt = str(rows*cols)+'h'
out[var_name].append(reshape(mat(unpack(fmt, f.read(rows*cols*2)), 'int16'), (cols, rows)).T)
# --- imatArray ---
elif 'imatArray' == var_type:
size = unpack('Q', f.read(8))[0]
out[var_name] = list()
for i in range(size):
rows = unpack('Q', f.read(8))[0]
cols = unpack('Q', f.read(8))[0]
fmt = str(rows*cols)+'i'
out[var_name].append(reshape(mat(unpack(fmt, f.read(rows*cols*4)), 'int32'), (cols, rows)).T)
# --- matArray ---
elif 'matArray' == var_type:
size = unpack('Q', f.read(8))[0]
out[var_name] = list()
for i in range(size):
rows = unpack('Q', f.read(8))[0]
cols = unpack('Q', f.read(8))[0]
fmt = str(rows*cols)+'d'
out[var_name].append(reshape(mat(unpack(fmt, f.read(rows*cols*8)), 'float64'), (cols, rows)).T)
# --- cmatArray ---
elif 'cmatArray' == var_type:
size = unpack('Q', f.read(8))[0]
out[var_name] = list()
for i in range(size):
rows = unpack('Q', f.read(8))[0]
cols = unpack('Q', f.read(8))[0]
fmt = str(2*rows*cols)+'d'
real_imag = unpack(fmt, f.read(2*rows*cols*8))
m = zeros((rows, cols), complex)
for j in range(rows):
for k in range(cols):
m[j,k] = complex128(complex(real_imag[2*j+2*rows*k], real_imag[2*j+1+2*rows*k]))
out[var_name].append(m)
else:
print 'Not a supported type: ', var_type
if pos+header_data_block_sizes[2] >= file_size:
break
else:
f.seek(pos+header_data_block_sizes[2], SEEK_SET)
f.close()
return out
|