This file is indexed.

/usr/include/loki/SafeBits.h is in libloki-dev 0.1.7-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
////////////////////////////////////////////////////////////////////////////////
// The Loki Library
// Copyright (c) 2009 by Fedor Pikus & Rich Sposato
// The copyright on this file is protected under the terms of the MIT license.
//
// Permission to use, copy, modify, distribute and sell this software for any
//     purpose is hereby granted without fee, provided that the above copyright
//     notice appear in all copies and that both that copyright notice and this
//     permission notice appear in supporting documentation.
//
// The author makes no claims about the suitability of this software for any
//     purpose. It is provided "as is" without express or implied warranty.
////////////////////////////////////////////////////////////////////////////////

// $Id$


#ifndef LOKI_INCLUDED_SAFE_BIT_FIELDS_H
#define LOKI_INCLUDED_SAFE_BIT_FIELDS_H

#include <cstdlib>
#include <assert.h>
#include <loki/static_check.h>


namespace Loki
{

/*
 ==========================================================================================================================================
   SafeBitField                    - type-safe class for bit fields.
   SafeBitConst                    - type-safe class for bit constants.
   SafeBitField is designed to be a [almost] drop-in replacement for integer flags and bit fields where individual bits are set and checked
   using symbolic names for flags:

      typedef unsigned long Labels_t;
      Labels_t labels;
      const Labels_t Label_A = 0x00000001;
      const Labels_t Label_B = 0x00000002;
      ...
      labels |= Label_B;
      if ( labels & Label_A ) { ... }

   Such code offers no protection against mismatching bit constants and bit fields:

      typedef unsigned long Kinds_t;
      Kinds_t kinds;
      const Kinds_t Kind_A = 0x00000004;
      ...
      if ( kinds & Label_A ) { ... } // Error but compiles

   SafeBitField is a drop-in replacement which generates a unique type for each bit field. Bit fields of different types cannot be applied
   to each other:

      LOKI_BIT_FIELD( unsigned long ) Labels_t;
      Labels_t labels;
      LOKI_BIT_CONST( Labels_t, Label_A, 1 );                                // 0x0001 - 1st bit is set
      LOKI_BIT_CONST( Labels_t, Label_B, 2 );                                // 0x0002 - 1st bit is set
      ...
      LOKI_BIT_FIELD( unsigned long ) Kinds_t;
      Kinds_t kinds;
      LOKI_BIT_CONST( Kinds_t, Kind_A, 3 );                                  // 0x0004 - 1st bit is set
      ...
      if ( kinds & Label_A ) { ... } // Does not compile

   Several other kinds of bit field misuse are caught by safe bit fields:

      if ( kinds & Kind_A == 0 ) { ... }
      if ( kinds && Kind_A ) { ... }

   There are few cases where drop-in replacement does not work:

   1. Operations involving bit fields and unnamed integers. Usually the integer in question is 0:

         Labels_t labels = 0;  // No longer compiles
         if ( ( labels & Label_A ) == 0 ) { ... } // Also does not compile

      The solution is to use named bit constants, including the one for 0:

         LOKI_BIT_CONST( Labels_t, Label_None, 0 );                               // 0x0000 - No bit is set
         Labels_t labels = Label_None; // Or just Labels_t labels; - constructor initializes to 0
         if ( ( labels & Label_A ) == Label_None ) { ... } // // Or just if ( labels & Label_A ) { ... }

   2. I/O and other operations which require integer variables and cannot be modified:

         void write_to_db( unsigned int word );
         Labels_t labels;
         write_to_db( labels ); // No longer compiles

      This problem is solved by reinterpreting the bit fields as an integer, the user is responsible for using the right
      type of integer:

         write_to_db( *((Labels_t::bit_word_t*)(&labels)) );

   ==========================================================================================================================================
*/

/// @par Non-Templated Initialization.
/// Not all compilers support template member functions where the template
/// arguments are not deduced but explicitly specified.  For these broken
/// compilers, a non-template make_bit_const() function is provided instead of
/// the template one. The only downside is that instead of compile-time checking
/// of the index argument, it does runtime checking.
#if defined(__SUNPRO_CC) || ( defined(__GNUC__) && (__GNUC__ < 3) )
    #define LOKI_BIT_FIELD_NONTEMPLATE_INIT
#endif

/// @par Forbidding Conversions.
/// This incomplete type prevents compilers from instantiating templates for
/// type conversions which should not happen. This incomplete type must be a
/// template: if the type is incomplete at the point of template definition,
/// the  template is illegal (although the standard allows compilers to accept
/// or reject such code, ยง14.6/, so some compilers will not issue diagnostics
/// unless template is instantiated). The standard-compliant way is to defer
/// binding to the point of instantiation by making the incomplete type itself
/// a template.
template < typename > struct Forbidden_conversion;  // This struct must not be defined!

/// Forward declaration of the field type.
template <
    unsigned int unique_index,
    typename word_t = unsigned long
> class SafeBitField;

////////////////////////////////////////////////////////////////////////////////
/// \class SafeBitConst Bit constants.
///  This class defines a bit-field constant - a collection of unchanging bits
///  used to compare to bit-fields.  Instances of this class are intended to act
///  as labels for bit-fields.
///
/// \par Safety
///  - This class provides operations used for comparisons and conversions, but
///    no operations which may modify the value.
///  - As a templated class, it provides type-safety so bit values and constants
///    used for different reasons may not be unknowingly compared to each other.
///  - The unique_index template parameter insures the unique type of each bit
///    bit-field.  It shares the unique_index with a similar SafeBitField.
///  - Its operations only allow comparisons to other bit-constants and
///    bit-fields of the same type.
////////////////////////////////////////////////////////////////////////////////

template
<
    unsigned int unique_index,
    typename word_t = unsigned long
>
class SafeBitConst
{
public:

    /// Type of the bit field is available if needed.
    typedef word_t bit_word_t;
    /// Corresponding field type.
    typedef SafeBitField< unique_index, word_t > field_t;
    /// Typedef is not allowed in friendship declaration.
    friend class SafeBitField< unique_index, word_t >;

    // Static factory constructor, creates a bit constant with one bit set. The position of the bit is given by the template parameter,
    // bit 1 is the junior bit, i.e. make_bit_const<1>() returns 1. Bit index 0 is a special case and returns 0.
    // This function should be used only to initialize the static bit constant objects.
    // This function will not compile if the bit index is outside the vaild range.
    // There is also a compile-time assert to make sure the size of the class is the same as the size of the underlaying integer type.
    // This assert could go into the constructor, but aCC does not seem to understand sizeof(SafeBitConst) in the constructor.
    //
#ifndef LOKI_BIT_FIELD_NONTEMPLATE_INIT
    template < unsigned int i > static SafeBitConst make_bit_const()
    {
        LOKI_STATIC_CHECK( i <= ( 8 * sizeof(word_t) ), Index_is_beyond_size_of_data );
        LOKI_STATIC_CHECK( sizeof(SafeBitConst) == sizeof(word_t), Object_size_does_not_match_data_size );
        // Why check for ( i > 0 ) again inside the shift if the shift
        // can never be evaluated for i == 0? Some compilers see shift by ( i - 1 )
        // and complain that for i == 0 the number is invalid, without
        // checking that shift needs evaluating.
        return SafeBitConst( ( i > 0 ) ? ( word_t(1) << ( ( i > 0 ) ? ( i - 1 ) : 0 ) ) : 0 );
    }
#else
    static SafeBitConst make_bit_const( unsigned int i )
    {
        LOKI_STATIC_CHECK( sizeof(SafeBitConst) == sizeof(word_t), Object_size_does_not_match_data_size );
        assert( i <= ( 8 * sizeof(word_t) ) ); // Index is beyond size of data.
        // Why check for ( i > 0 ) again inside the shift if the shift
        // can never be evaluated for i == 0? Some compilers see shift by ( i - 1 )
        // and complain that for i == 0 the number is invalid, without
        // checking that shift needs evaluating.
        return SafeBitConst( ( i > 0 ) ? ( word_t(1) << ( ( i > 0 ) ? ( i - 1 ) : 0 ) ) : 0 );
    }
#endif

    /// Default constructor allows client code to construct bit fields on the stack.
    SafeBitConst() : word( 0 ) {}

    /// Copy constructor.
    SafeBitConst( const SafeBitConst& rhs ) : word( rhs.word ) {}

    /// Comparison operators which take a constant bit value.
    bool operator == ( const SafeBitConst & rhs ) const { return word == rhs.word; }
    bool operator != ( const SafeBitConst & rhs ) const { return word != rhs.word; }
    bool operator <  ( const SafeBitConst & rhs ) const { return word <  rhs.word; }
    bool operator >  ( const SafeBitConst & rhs ) const { return word >  rhs.word; }
    bool operator <= ( const SafeBitConst & rhs ) const { return word <= rhs.word; }
    bool operator >= ( const SafeBitConst & rhs ) const { return word >= rhs.word; }

    /// Comparision operators for mutable bit fields.
    bool operator == ( const field_t & rhs ) const { return word == rhs.word; }
    bool operator != ( const field_t & rhs ) const { return word != rhs.word; }
    bool operator <  ( const field_t & rhs ) const { return word <  rhs.word; }
    bool operator >  ( const field_t & rhs ) const { return word >  rhs.word; }
    bool operator <= ( const field_t & rhs ) const { return word <= rhs.word; }
    bool operator >= ( const field_t & rhs ) const { return word >= rhs.word; }

    /// Bitwise operations.  Operation-assignment operators are not needed,
    /// since bit constants cannot be changed after they are initialized.
    const SafeBitConst operator | ( const SafeBitConst & rhs ) const { return SafeBitConst( word | rhs.word ); }
    const SafeBitConst operator & ( const SafeBitConst & rhs ) const { return SafeBitConst( word & rhs.word ); }
    const SafeBitConst operator ^ ( const SafeBitConst & rhs ) const { return SafeBitConst( word ^ rhs.word ); }
    const SafeBitConst operator ~ ( void ) const { return SafeBitConst( ~word ); }

    /// These bitwise operators return a bit-field instead of a bit-const.
    field_t operator | ( const field_t & rhs ) const { return field_t( word | rhs.word ); }
    field_t operator & ( const field_t & rhs ) const { return field_t( word & rhs.word ); }
    field_t operator ^ ( const field_t & rhs ) const { return field_t( word ^ rhs.word ); }

    /// The shift operators move bits inside the bit field.  These are useful in
    /// loops which act over bit fields and increment them.
    const SafeBitConst operator << ( unsigned int s ) const { return SafeBitConst( word << s ); }
    const SafeBitConst operator >> ( unsigned int s ) const { return SafeBitConst( word >> s ); }

    /// Word size is also the maximum number of different bit fields for a given word type.
    static size_t size() { return ( 8 * sizeof( word_t ) ); }

private:

    /// Copy-assignment operator is not implemented since it does not make sense
    /// for a constant object.
    SafeBitConst operator = ( const SafeBitConst & rhs );

    // Private constructor from an integer type.
    explicit SafeBitConst( word_t init ) : word( init ) {}

    /// This data stores a single bit value.  It is declared const to enforce
    // constness for all functions of this class.
    const word_t word;

    // Here comes the interesting stuff: all the operators designed to
    // trap unintended conversions and make them not compile.
    // Operators below handle code like this:
    //    SafeBitField<1> label1;
    //    SafeBitField<2> label2;
    //    if ( label1 & label2 ) { ... }

    // These operators are private, and will not instantiate in any
    // event because of the incomplete Forbidden_conversion struct.
    template < typename T > SafeBitConst operator|( T ) const { Forbidden_conversion< T > wrong; return *this; }
    template < typename T > SafeBitConst operator&( T ) const { Forbidden_conversion< T > wrong; return *this; }
    template < typename T > SafeBitConst operator^( T ) const { Forbidden_conversion< T > wrong; return *this; }
    template < typename T > SafeBitConst operator|=( T ) const { Forbidden_conversion< T > wrong; return *this; }
    template < typename T > SafeBitConst operator&=( T ) const { Forbidden_conversion< T > wrong; return *this; }
    template < typename T > SafeBitConst operator^=( T ) const { Forbidden_conversion< T > wrong; return *this; }

    // And the same thing for comparisons: private and unusable.
    //    if ( label1 == label2 ) { ... }
    template < typename T > bool operator==( const T ) const { Forbidden_conversion< T > wrong; return true; }
    template < typename T > bool operator!=( const T ) const { Forbidden_conversion< T > wrong; return true; }
    template < typename T > bool operator<( const T ) const { Forbidden_conversion< T > wrong; return true; }
    template < typename T > bool operator>( const T ) const { Forbidden_conversion< T > wrong; return true; }
    template < typename T > bool operator<=( const T ) const { Forbidden_conversion< T > wrong; return true; }
    template < typename T > bool operator>=( const T ) const { Forbidden_conversion< T > wrong; return true; }
};


////////////////////////////////////////////////////////////////////////////////
/// \class SafeBitConst Bit constants.
///  This class defines a bit-field constant - a collection of unchanging bits
///  used to compare to bit-fields.  Instances of this class are intended to
///  store bit values.
///
/// \par Safety
///  - This class provides operations used for comparisons and conversions, and
///    also operations which may safely modify the value.
///  - As a templated class, it provides type-safety so bit values and constants
///    used for different reasons may not be unknowingly compared to each other.
///  - The unique_index template parameter insures the unique type of each bit
///    bit-field.  It shares the unique_index with a similar SafeBitConst.
///  - Its operations only allow comparisons to other bit-constants and
///    bit-fields of the same type.
////////////////////////////////////////////////////////////////////////////////

template
<
    unsigned int unique_index,
    typename word_t
>
class SafeBitField
{
public:

    /// Type of the bit field is available if needed.
    typedef word_t bit_word_t;
    /// Corresponding field type.
    typedef SafeBitConst< unique_index, word_t > const_t;
    /// Typedef is not allowed in friendship declaration.
    friend class SafeBitConst<unique_index, word_t>;

    /// Default constructor allows client code to construct bit fields on the stack.
    SafeBitField() : word( 0 ) {}

    /// Copy constructor and assignment operators.
    SafeBitField( const SafeBitField & rhs ) : word( rhs.word ) {}
    SafeBitField & operator = ( const SafeBitField & rhs ) { word = rhs.word; return *this; }

    /// Copy constructor and assignment operators from constant bit fields.
    SafeBitField( const const_t & rhs ) : word( rhs.word ) {}
    SafeBitField & operator = ( const const_t & rhs ) { word = rhs.word; return *this; }

    /// These comparison operators act on bit-fields of the same type.
    bool operator == ( const SafeBitField & rhs ) const { return word == rhs.word; }
    bool operator != ( const SafeBitField & rhs ) const { return word != rhs.word; }
    bool operator <  ( const SafeBitField & rhs ) const { return word <  rhs.word; }
    bool operator >  ( const SafeBitField & rhs ) const { return word >  rhs.word; }
    bool operator <= ( const SafeBitField & rhs ) const { return word <= rhs.word; }
    bool operator >= ( const SafeBitField & rhs ) const { return word >= rhs.word; }

    /// These comparison operators act on bit-constants of a similar type.
    bool operator == ( const const_t & rhs ) const { return word == rhs.word; }
    bool operator != ( const const_t & rhs ) const { return word != rhs.word; }
    bool operator <  ( const const_t & rhs ) const { return word <  rhs.word; }
    bool operator >  ( const const_t & rhs ) const { return word >  rhs.word; }
    bool operator <= ( const const_t & rhs ) const { return word <= rhs.word; }
    bool operator >= ( const const_t & rhs ) const { return word >= rhs.word; }

    /// Bitwise operations that use bit-fields.
    SafeBitField operator |  ( const SafeBitField & rhs ) const { return SafeBitField( word | rhs.word ); }
    SafeBitField operator &  ( const SafeBitField & rhs ) const { return SafeBitField( word & rhs.word ); }
    SafeBitField operator ^  ( const SafeBitField & rhs ) const { return SafeBitField( word ^ rhs.word ); }
    SafeBitField operator ~  ( void ) const { return SafeBitField( ~word ); }
    SafeBitField operator |= ( const SafeBitField & rhs ) { word |= rhs.word; return SafeBitField( *this ); }
    SafeBitField operator &= ( const SafeBitField & rhs ) { word &= rhs.word; return SafeBitField( *this ); }
    SafeBitField operator ^= ( const SafeBitField & rhs ) { word ^= rhs.word; return SafeBitField( *this ); }

    /// Bitwise operators that use bit-constants.
    SafeBitField operator |  ( const_t rhs ) const { return SafeBitField( word | rhs.word ); }
    SafeBitField operator &  ( const_t rhs ) const { return SafeBitField( word & rhs.word ); }
    SafeBitField operator ^  ( const_t rhs ) const { return SafeBitField( word ^ rhs.word ); }
    SafeBitField operator |= ( const_t rhs ) { word |= rhs.word; return SafeBitField( *this ); }
    SafeBitField operator &= ( const_t rhs ) { word &= rhs.word; return SafeBitField( *this ); }
    SafeBitField operator ^= ( const_t rhs ) { word ^= rhs.word; return SafeBitField( *this ); }

    // Conversion to bool.
    // This is a major source of headaches, but it's required to support code like this:
    //    const static SafeBitConst<1> Label_value = SafeBitConst<1>::make_bit_const<1>();
    //    SafeBitField<1> label;
    //    if ( label & Label_value ) { ... } // Nice...
    //
    // The downside is that this allows all sorts of nasty conversions. Without additional precautions, bit fields of different types
    // can be converted to bool and then compared or operated on:
    //    SafeBitField<1> label1;
    //    SafeBitField<2> label2;
    //    if ( label1 == label2 ) { ... } // Yuck!
    //    if ( label1 & label2 ) { ... } // Blech!
    //
    // It is somewhat safer to convert to a pointer, at least pointers to different types cannot be readilly compared, and there are no
    // bitwise operations on pointers, but the conversion from word_t to a pointer can have run-time cost if they are of different size.
    //
    operator const bool() const { return ( 0 != word ); }

    // Shift operators shift bits inside the bit field. Does not make
    // sense, most of the time, except perhaps to loop over labels and
    // increment them.
    SafeBitField operator <<  ( unsigned int s ) { return SafeBitField( word << s ); }
    SafeBitField operator >>  ( unsigned int s ) { return SafeBitField( word >> s ); }
    SafeBitField operator <<= ( unsigned int s ) { word <<= s; return *this; }
    SafeBitField operator >>= ( unsigned int s ) { word >>= s; return *this; }

    // Word size is also the maximum number of different bit fields for
    // a given word type.
    static size_t size( void ) { return ( 8 * sizeof( word_t ) ); }

private:

    /// Private constructor from an integer type. Don't put too much stock into
    /// explicit declaration, it's better than nothing but does not solve all
    /// problems with undesired conversions because SafeBitField coverts to bool.
    explicit SafeBitField( word_t init ) : word( init ) {}

    /// This stores the bits.
    word_t word;

    // Here comes the interesting stuff: all the operators designed to
    // trap unintended conversions and make them not compile.
    // Operators below handle code like this:
    //    SafeBitField<1> label1;
    //    SafeBitField<2> label2;
    //    if ( label1 & label2 ) { ... }

    // These operators are private, and will not instantiate in any
    // event because of the incomplete Forbidden_conversion struct.
    template < typename T > SafeBitField operator |  ( T ) const { Forbidden_conversion< T > wrong; return *this; }
    template < typename T > SafeBitField operator &  ( T ) const { Forbidden_conversion< T > wrong; return *this; }
    template < typename T > SafeBitField operator ^  ( T ) const { Forbidden_conversion< T > wrong; return *this; }
    template < typename T > SafeBitField operator |= ( T ) const { Forbidden_conversion< T > wrong; return *this; }
    template < typename T > SafeBitField operator &= ( T ) const { Forbidden_conversion< T > wrong; return *this; }
    template < typename T > SafeBitField operator ^= ( T ) const { Forbidden_conversion< T > wrong; return *this; }

    // And the same thing for comparisons:
    //    if ( label1 == label2 ) { ... }
    template < typename T > bool operator == ( const T ) const { Forbidden_conversion< T > wrong; return true; }
    template < typename T > bool operator != ( const T ) const { Forbidden_conversion< T > wrong; return true; }
    template < typename T > bool operator <  ( const T ) const { Forbidden_conversion< T > wrong; return true; }
    template < typename T > bool operator >  ( const T ) const { Forbidden_conversion< T > wrong; return true; }
    template < typename T > bool operator <= ( const T ) const { Forbidden_conversion< T > wrong; return true; }
    template < typename T > bool operator >= ( const T ) const { Forbidden_conversion< T > wrong; return true; }
};

// The above template member operators catch errors when the first
// argument to a binary operator is a label, but they don't work when
// the first argument is an integer and the second one is a label: the
// label converts to bool and the operator is performed on two integers.
// These operators catch errors like this:
//    SafeBitField<1> label1;
//    SafeBitField<2> label2;
//    if ( !label1 & label2 ) { ... }
// where the first label is converted to bool (these errors cannot be
// caught by member operators of SafeBitField class because the first
// argument is not SafeBitField but bool.
//
// If used, these operators will not instantiate because of the
// incomplete Forbidden_conversion struct.

template < unsigned int unique_index, typename word_t >
inline SafeBitField< unique_index, word_t > operator & ( bool, SafeBitField< unique_index, word_t > rhs )
{
    Forbidden_conversion<word_t> wrong;
    return rhs;
}

template < unsigned int unique_index, typename word_t >
inline SafeBitField< unique_index, word_t > operator | ( bool, SafeBitField< unique_index, word_t > rhs )
{
    Forbidden_conversion< word_t > wrong;
    return rhs;
}

template < unsigned int unique_index, typename word_t >
inline SafeBitField< unique_index, word_t > operator ^ ( bool, SafeBitField< unique_index, word_t > rhs )
{
    Forbidden_conversion< word_t > wrong;
    return rhs;
}

template < unsigned int unique_index, typename word_t >
inline SafeBitField< unique_index, word_t > operator == ( bool, SafeBitField< unique_index, word_t > rhs )
{
    Forbidden_conversion< word_t > wrong;
    return rhs;
}

template < unsigned int unique_index, typename word_t >
inline SafeBitField< unique_index, word_t > operator != ( bool, SafeBitField< unique_index, word_t > rhs )
{
    Forbidden_conversion< word_t > wrong;
    return rhs;
}

// Finally, few macros. All macros are conditionally defined to use the SafeBitField classes if LOKI_SAFE_BIT_FIELD is defined. Otherwise,
// the macros fall back on the use of typedefs and integer constants. This provides no addititonal safety but allows the code to support the
// mixture of compilers which are broken to different degrees.
#define LOKI_SAFE_BIT_FIELD

// The first macro helps to declare new bit field types:
// LOKI_BIT_FIELD( ulong ) field_t;
// This creates a typedef field_t for SafeBitField<unique_index, ulong> where index is the current line number. Since line numbers __LINE__ are counted
// separately for all header files, this ends up being the same type in all files using the header which defines field_t.
#ifdef LOKI_SAFE_BIT_FIELD
    #define LOKI_BIT_FIELD( word_t ) typedef SafeBitField<__LINE__, word_t>
#else
    #define LOKI_BIT_FIELD( word_t ) typedef word_t
#endif // LOKI_SAFE_BIT_FIELD

// The second macro helps to declare static bit constants:
// LOKI_BIT_CONST( field_t, Label_1, 1 );
// creates new bit field object named Label_1 of type field_t which represents the field with the 1st (junior) bit set.
#ifdef LOKI_SAFE_BIT_FIELD
    #ifndef LOKI_BIT_FIELD_NONTEMPLATE_INIT
        #define LOKI_BIT_CONST( field_t, label, bit_index ) \
            static const field_t::const_t label = field_t::const_t::make_bit_const<bit_index>()
    #else
        #define LOKI_BIT_CONST( field_t, label, bit_index ) \
            static const field_t::const_t label = field_t::const_t::make_bit_const( bit_index )
    #endif // LOKI_BIT_FIELD_NONTEMPLATE_INIT
#else
    inline size_t make_bit_const( size_t i ) { return ( i > 0 ) ? ( size_t(1) << ( ( i > 0 ) ? ( i - 1 ) : 0 ) ) : 0; }
    #define LOKI_BIT_CONST( field_t, label, bit_index ) static const field_t label = make_bit_const( bit_index )
#endif // LOKI_SAFE_BIT_FIELD

// The third macro helps to declare complex bit constants which are combination of several bits:
// LOKI_BIT_CONSTS( field_t, Label12 ) = Label_1 | Label_2;
#ifdef LOKI_SAFE_BIT_FIELD
    #define LOKI_BIT_CONSTS( field_t, label ) static const field_t::const_t label
#else
    #define LOKI_BIT_CONSTS( field_t, label ) static const field_t label
#endif // LOKI_SAFE_BIT_FIELD

// The fourth macro helps to declare the maximum number of bit constants for a given type:
// static const size_t count = LOKI_BIT_FIELD_COUNT( field_t );
// declared a variable "count" initialized to field_t::size()
#ifdef LOKI_SAFE_BIT_FIELD
    #define LOKI_BIT_FIELD_COUNT( field_t ) field_t::size()
#else
    #define LOKI_BIT_FIELD_COUNT( field_t ) ( 8 * sizeof(field_t) )
#endif // LOKI_SAFE_BIT_FIELD

} // namespace Loki

#endif // LOKI_INCLUDED_SAFE_BIT_FIELDS_H