This file is indexed.

/usr/include/mapnik/png_io.hpp is in libmapnik-dev 2.2.0+ds1-6build2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
/*****************************************************************************
 *
 * This file is part of Mapnik (c++ mapping toolkit)
 *
 * Copyright (C) 2011 Artem Pavlenko
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 *
 *****************************************************************************/

#ifndef MAPNIK_PNG_IO_HPP
#define MAPNIK_PNG_IO_HPP

// mapnik
#include <mapnik/palette.hpp>
#include <mapnik/octree.hpp>
#include <mapnik/hextree.hpp>
#include <mapnik/miniz_png.hpp>
#include <mapnik/image_data.hpp>

// zlib
#include <zlib.h>  // for Z_DEFAULT_COMPRESSION

// boost
#include <boost/scoped_array.hpp>

// stl
#include <cassert>

extern "C"
{
#include <png.h>
}

#define MAX_OCTREE_LEVELS 4

namespace mapnik {

template <typename T>
void write_data (png_structp png_ptr, png_bytep data, png_size_t length)
{
    T * out = static_cast<T*>(png_get_io_ptr(png_ptr));
    out->write(reinterpret_cast<char*>(data), length);
}

template <typename T>
void flush_data (png_structp png_ptr)
{
    T * out = static_cast<T*>(png_get_io_ptr(png_ptr));
    out->flush();
}

template <typename T1, typename T2>
void save_as_png(T1 & file,
                T2 const& image,
                int compression = Z_DEFAULT_COMPRESSION,
                int strategy = Z_DEFAULT_STRATEGY,
                int trans_mode = -1,
                bool use_miniz = false)

{
    if (use_miniz)
    {
        MiniZ::PNGWriter writer(compression,strategy);
        if (trans_mode == 0)
        {
            writer.writeIHDR(image.width(), image.height(), 24);
            writer.writeIDATStripAlpha(image);
        }
        else
        {
            writer.writeIHDR(image.width(), image.height(), 32);
            writer.writeIDAT(image);
        }
        writer.writeIEND();
        writer.toStream(file);
        return;
    }

    png_voidp error_ptr=0;
    png_structp png_ptr=png_create_write_struct(PNG_LIBPNG_VER_STRING,
                                                error_ptr,0, 0);

    if (!png_ptr) return;

    // switch on optimization only if supported
#if defined(PNG_LIBPNG_VER) && (PNG_LIBPNG_VER >= 10200) && defined(PNG_MMX_CODE_SUPPORTED)
    png_uint_32 mask, flags;
    flags = png_get_asm_flags(png_ptr);
    mask = png_get_asm_flagmask(PNG_SELECT_READ | PNG_SELECT_WRITE);
    png_set_asm_flags(png_ptr, flags | mask);
#endif
    png_set_filter(png_ptr, PNG_FILTER_TYPE_BASE, PNG_FILTER_NONE);
    png_infop info_ptr = png_create_info_struct(png_ptr);
    if (!info_ptr)
    {
        png_destroy_write_struct(&png_ptr,(png_infopp)0);
        return;
    }
    jmp_buf* jmp_context = (jmp_buf*) png_get_error_ptr(png_ptr);
    if (jmp_context)
    {
        png_destroy_write_struct(&png_ptr, &info_ptr);
        return;
    }
    png_set_write_fn (png_ptr, &file, &write_data<T1>, &flush_data<T1>);

    png_set_compression_level(png_ptr, compression);
    png_set_compression_strategy(png_ptr, strategy);
    png_set_compression_buffer_size(png_ptr, 32768);

    png_set_IHDR(png_ptr, info_ptr,image.width(),image.height(),8,
                 (trans_mode == 0) ? PNG_COLOR_TYPE_RGB : PNG_COLOR_TYPE_RGB_ALPHA,PNG_INTERLACE_NONE,
                 PNG_COMPRESSION_TYPE_DEFAULT,PNG_FILTER_TYPE_DEFAULT);
    boost::scoped_array<png_byte*> row_pointers(new png_bytep[image.height()]);
    for (unsigned int i = 0; i < image.height(); i++)
    {
        row_pointers[i] = (png_bytep)image.getRow(i);
    }
    png_set_rows(png_ptr, info_ptr, row_pointers.get());
    png_write_png(png_ptr, info_ptr, (trans_mode == 0) ? PNG_TRANSFORM_STRIP_FILLER_AFTER : PNG_TRANSFORM_IDENTITY, NULL);
    png_destroy_write_struct(&png_ptr, &info_ptr);
}

template <typename T>
void reduce_8(T const& in,
              image_data_8 & out,
              octree<rgb> trees[],
              unsigned limits[],
              unsigned levels,
              std::vector<unsigned> & alpha)
{
    unsigned width = in.width();
    unsigned height = in.height();

    std::vector<unsigned> alphaCount(alpha.size());
    for(unsigned i=0; i<alpha.size(); i++)
    {
        alpha[i] = 0;
        alphaCount[i] = 0;
    }
    for (unsigned y = 0; y < height; ++y)
    {
        mapnik::image_data_32::pixel_type const * row = in.getRow(y);
        mapnik::image_data_8::pixel_type  * row_out = out.getRow(y);
        for (unsigned x = 0; x < width; ++x)
        {
            unsigned val = row[x];
            byte index = 0;
            int idx = -1;
            for(int j=levels-1; j>0; j--)
            {
                if (U2ALPHA(val)>=limits[j] && trees[j].colors()>0)
                {
                    index = idx = trees[j].quantize(val);
                    break;
                }
            }
            if (idx>=0 && idx<(int)alpha.size())
            {
                alpha[idx]+=U2ALPHA(val);
                alphaCount[idx]++;
            }
            row_out[x] = index;
        }
    }
    for(unsigned i=0; i<alpha.size(); i++)
    {
        if (alphaCount[i]!=0)
        {
            alpha[i] /= alphaCount[i];
        }
    }
}

template <typename T>
void reduce_4(T const& in,
               image_data_8 & out,
               octree<rgb> trees[],
               unsigned limits[],
               unsigned levels,
               std::vector<unsigned> & alpha)
{
    unsigned width = in.width();
    unsigned height = in.height();

    std::vector<unsigned> alphaCount(alpha.size());
    for(unsigned i=0; i<alpha.size(); i++)
    {
        alpha[i] = 0;
        alphaCount[i] = 0;
    }
    for (unsigned y = 0; y < height; ++y)
    {
        mapnik::image_data_32::pixel_type const * row = in.getRow(y);
        mapnik::image_data_8::pixel_type  * row_out = out.getRow(y);
        for (unsigned x = 0; x < width; ++x)
        {
            unsigned val = row[x];
            byte index = 0;
            int idx=-1;
            for(int j=levels-1; j>0; j--)
            {
                if (U2ALPHA(val)>=limits[j] && trees[j].colors()>0)
                {
                    index = idx = trees[j].quantize(val);
                    break;
                }
            }
            if (idx>=0 && idx<(int)alpha.size())
            {
                alpha[idx]+=U2ALPHA(val);
                alphaCount[idx]++;
            }
            if (x%2 == 0)
            {
                index = index<<4;
            }
            row_out[x>>1] |= index;
        }
    }
    for(unsigned i=0; i<alpha.size(); i++)
    {
        if (alphaCount[i]!=0)
        {
            alpha[i] /= alphaCount[i];
        }
    }
}

// 1-bit but only one color.
template <typename T>
void reduce_1(T const&,
              image_data_8 & out,
              octree<rgb> /*trees*/[],
              unsigned /*limits*/[],
              std::vector<unsigned> & /*alpha*/)
{
    out.set(0); // only one color!!!
}

template <typename T>
void save_as_png(T & file, std::vector<mapnik::rgb> const& palette,
                 mapnik::image_data_8 const& image,
                 unsigned width,
                 unsigned height,
                 unsigned color_depth,
                 int compression,
                 int strategy,
                 std::vector<unsigned> const&alpha,
                 bool use_miniz)
{
    if (use_miniz)
    {
        MiniZ::PNGWriter writer(compression,strategy);
        // image.width()/height() does not reflect the actual image dimensions; it
        // refers to the quantized scanlines.
        writer.writeIHDR(width, height, color_depth);
        writer.writePLTE(palette);
        writer.writetRNS(alpha);
        writer.writeIDAT(image);
        writer.writeIEND();
        writer.toStream(file);
        return;
    }

    png_voidp error_ptr=0;
    png_structp png_ptr=png_create_write_struct(PNG_LIBPNG_VER_STRING,
                                                error_ptr,0, 0);

    if (!png_ptr)
    {
        return;
    }

    // switch on optimization only if supported
#if defined(PNG_LIBPNG_VER) && (PNG_LIBPNG_VER >= 10200) && defined(PNG_MMX_CODE_SUPPORTED)
    png_uint_32 mask, flags;
    flags = png_get_asm_flags(png_ptr);
    mask = png_get_asm_flagmask(PNG_SELECT_READ | PNG_SELECT_WRITE);
    png_set_asm_flags(png_ptr, flags | mask);
#endif
    png_set_filter(png_ptr, PNG_FILTER_TYPE_BASE, PNG_FILTER_NONE);
    png_infop info_ptr = png_create_info_struct(png_ptr);
    if (!info_ptr)
    {
        png_destroy_write_struct(&png_ptr,(png_infopp)0);
        return;
    }
    jmp_buf* jmp_context = (jmp_buf*) png_get_error_ptr(png_ptr);
    if (jmp_context)
    {
        png_destroy_write_struct(&png_ptr, &info_ptr);
        return;
    }
    png_set_write_fn (png_ptr, &file, &write_data<T>, &flush_data<T>);

    png_set_compression_level(png_ptr, compression);
    png_set_compression_strategy(png_ptr, strategy);
    png_set_compression_buffer_size(png_ptr, 32768);

    png_set_IHDR(png_ptr, info_ptr,width,height,color_depth,
                 PNG_COLOR_TYPE_PALETTE,PNG_INTERLACE_NONE,
                 PNG_COMPRESSION_TYPE_DEFAULT,PNG_FILTER_TYPE_DEFAULT);

    png_color* pal = const_cast<png_color*>(reinterpret_cast<const png_color*>(&palette[0]));
    png_set_PLTE(png_ptr, info_ptr, pal, palette.size());

    // make transparent lowest indexes, so tRNS is small
    if (alpha.size()>0)
    {
        std::vector<png_byte> trans(alpha.size());
        unsigned alphaSize=0;//truncate to nonopaque values
        for(unsigned i=0; i < alpha.size(); i++)
        {
            trans[i]=alpha[i];
            if (alpha[i]<255)
            {
                alphaSize = i+1;
            }
        }
        if (alphaSize>0)
        {
            png_set_tRNS(png_ptr, info_ptr, (png_bytep)&trans[0], alphaSize, 0);
        }
    }

    png_write_info(png_ptr, info_ptr);
    for (unsigned i=0;i<height;i++)
    {
        png_write_row(png_ptr,(png_bytep)image.getRow(i));
    }

    png_write_end(png_ptr, info_ptr);
    png_destroy_write_struct(&png_ptr, &info_ptr);
}

template <typename T1,typename T2>
void save_as_png8_oct(T1 & file,
                      T2 const& image,
                      const unsigned max_colors = 256,
                      int compression = Z_DEFAULT_COMPRESSION,
                      int strategy = Z_DEFAULT_STRATEGY,
                      int trans_mode = -1,
                      bool use_miniz = false)
{
    // number of alpha ranges in png8 format; 2 results in smallest image with binary transparency
    // 3 is minimum for semitransparency, 4 is recommended, anything else is worse
    const unsigned TRANSPARENCY_LEVELS = (trans_mode==2||trans_mode<0)?MAX_OCTREE_LEVELS:2;
    unsigned width = image.width();
    unsigned height = image.height();
    unsigned alphaHist[256];//transparency histogram
    unsigned semiCount = 0;//sum of semitransparent pixels
    unsigned meanAlpha = 0;

    if (trans_mode == 0)
    {
        meanAlpha = 255;
    }
    else
    {
        for(int i=0; i<256; i++)
        {
            alphaHist[i] = 0;
        }
        for (unsigned y = 0; y < height; ++y)
        {
            for (unsigned x = 0; x < width; ++x)
            {
                unsigned val = U2ALPHA((unsigned)image.getRow(y)[x]);
                alphaHist[val]++;
                meanAlpha += val;
                if (val>0 && val<255)
                {
                    semiCount++;
                }
            }
        }
        meanAlpha /= width*height;
    }

    // transparency ranges division points
    unsigned limits[MAX_OCTREE_LEVELS+1];
    limits[0] = 0;
    limits[1] = (trans_mode!=0 && alphaHist[0]>0)?1:0;
    limits[TRANSPARENCY_LEVELS] = 256;
    for(unsigned j=2; j<TRANSPARENCY_LEVELS; j++)
    {
        limits[j] = limits[1];
    }
    if (trans_mode != 0)
    {
        unsigned alphaHistSum = 0;
        for(unsigned i=1; i<256; i++)
        {
            alphaHistSum += alphaHist[i];
            for(unsigned j=1; j<TRANSPARENCY_LEVELS; j++)
            {
                if (alphaHistSum<semiCount*(j)/4)
                {
                    limits[j] = i;
                }
            }
        }
    }
    // avoid too wide full transparent range
    if (limits[1]>256/(TRANSPARENCY_LEVELS-1))
    {
        limits[1]=256/(TRANSPARENCY_LEVELS-1);
    }
    // avoid too wide full opaque range
    if (limits[TRANSPARENCY_LEVELS-1]<212)
    {
        limits[TRANSPARENCY_LEVELS-1]=212;
    }
    if (TRANSPARENCY_LEVELS==2)
    {
        limits[1]=127;
    }
    // estimated number of colors from palette assigned to chosen ranges
    unsigned cols[MAX_OCTREE_LEVELS];
    // count colors
    if (trans_mode == 0)
    {
        for (unsigned j=0; j<TRANSPARENCY_LEVELS; j++)
        {
            cols[j] = 0;
        }
        cols[TRANSPARENCY_LEVELS-1] = width * height;
    }
    else
    {
        for (unsigned j=0; j<TRANSPARENCY_LEVELS; j++)
        {
            cols[j] = 0;
            for (unsigned i=limits[j]; i<limits[j+1]; i++)
            {
                cols[j] += alphaHist[i];
            }
        }
    }

    unsigned divCoef = width*height-cols[0];
    if (divCoef==0)
    {
        divCoef = 1;
    }
    cols[0] = cols[0]>0?1:0; // fully transparent color (one or not at all)

    if (max_colors>=64)
    {
        // give chance less populated but not empty cols to have at least few colors(12)
        unsigned minCols = (12+1)*divCoef/(max_colors-cols[0]);
        for(unsigned j=1; j<TRANSPARENCY_LEVELS; j++)
        {
            if (cols[j]>12 && cols[j]<minCols)
            {
                divCoef += minCols-cols[j];
                cols[j] = minCols;
            }
        }
    }
    unsigned usedColors = cols[0];
    for(unsigned j=1; j<TRANSPARENCY_LEVELS-1; j++)
    {
        cols[j] = cols[j]*(max_colors-cols[0])/divCoef;
        usedColors += cols[j];
    }
    // use rest for most opaque group of pixels
    cols[TRANSPARENCY_LEVELS-1] = max_colors-usedColors;

    //no transparency
    if (trans_mode == 0)
    {
        limits[1] = 0;
        cols[0] = 0;
        cols[1] = max_colors;
    }

    // octree table for separate alpha range with 1-based index (0 is fully transparent: no color)
    octree<rgb> trees[MAX_OCTREE_LEVELS];
    for(unsigned j=1; j<TRANSPARENCY_LEVELS; j++)
    {
        trees[j].setMaxColors(cols[j]);
    }
    for (unsigned y = 0; y < height; ++y)
    {
        typename T2::pixel_type const * row = image.getRow(y);
        for (unsigned x = 0; x < width; ++x)
        {
            unsigned val = row[x];
            // insert to proper tree based on alpha range
            for(unsigned j=TRANSPARENCY_LEVELS-1; j>0; j--)
            {
                if (cols[j]>0 && U2ALPHA(val)>=limits[j])
                {
                    trees[j].insert(mapnik::rgb(U2RED(val), U2GREEN(val), U2BLUE(val)));
                    break;
                }
            }
        }
    }
    unsigned leftovers = 0;
    std::vector<rgb> palette;
    palette.reserve(max_colors);
    if (cols[0])
    {
        palette.push_back(rgb(0,0,0));
    }

    for(unsigned j=1; j<TRANSPARENCY_LEVELS; j++)
    {
        if (cols[j]>0)
        {
            if (leftovers>0)
            {
                cols[j] += leftovers;
                trees[j].setMaxColors(cols[j]);
                leftovers = 0;
            }
            std::vector<rgb> pal;
            trees[j].setOffset(palette.size());
            trees[j].create_palette(pal);
            assert(pal.size() <= max_colors);
            leftovers = cols[j]-pal.size();
            cols[j] = pal.size();
            for(unsigned i=0; i<pal.size(); i++)
            {
                palette.push_back(pal[i]);
            }
            assert(palette.size() <= 256);
        }
    }

    //transparency values per palette index
    std::vector<unsigned> alphaTable;
    //alphaTable.resize(palette.size());//allow semitransparency also in almost opaque range
    if (trans_mode != 0)
    {
        alphaTable.resize(palette.size() - cols[TRANSPARENCY_LEVELS-1]);
    }

    if (palette.size() > 16 )
    {
        // >16 && <=256 colors -> write 8-bit color depth
        image_data_8 reduced_image(width,height);
        reduce_8(image, reduced_image, trees, limits, TRANSPARENCY_LEVELS, alphaTable);
        save_as_png(file,palette,reduced_image,width,height,8,compression,strategy,alphaTable,use_miniz);
    }
    else if (palette.size() == 1)
    {
        // 1 color image ->  write 1-bit color depth PNG
        unsigned image_width  = ((width + 15) >> 3) & ~1U; // 1-bit image, round up to 16-bit boundary
        unsigned image_height = height;
        image_data_8 reduced_image(image_width,image_height);
        reduce_1(image,reduced_image,trees, limits, alphaTable);
        if (meanAlpha<255 && cols[0]==0)
        {
            alphaTable.resize(1);
            alphaTable[0] = meanAlpha;
        }
        save_as_png(file,palette,reduced_image,width,height,1,compression,strategy,alphaTable,use_miniz);
    }
    else
    {
        // <=16 colors -> write 4-bit color depth PNG
        unsigned image_width  = ((width + 7) >> 1) & ~3U; // 4-bit image, round up to 32-bit boundary
        unsigned image_height = height;
        image_data_8 reduced_image(image_width,image_height);
        reduce_4(image, reduced_image, trees, limits, TRANSPARENCY_LEVELS, alphaTable);
        save_as_png(file,palette,reduced_image,width,height,4,compression,strategy,alphaTable,use_miniz);
    }
}


template <typename T1, typename T2, typename T3>
void save_as_png8(T1 & file,
                  T2 const& image,
                  T3 const & tree,
                  std::vector<mapnik::rgb> const& palette,
                  std::vector<unsigned> const& alphaTable,
                  int compression = Z_DEFAULT_COMPRESSION,
                  int strategy = Z_DEFAULT_STRATEGY,
                  bool use_miniz = false)
{
    unsigned width = image.width();
    unsigned height = image.height();

    if (palette.size() > 16 )
    {
        // >16 && <=256 colors -> write 8-bit color depth
        image_data_8 reduced_image(width, height);
        for (unsigned y = 0; y < height; ++y)
        {
            mapnik::image_data_32::pixel_type const * row = image.getRow(y);
            mapnik::image_data_8::pixel_type  * row_out = reduced_image.getRow(y);
            for (unsigned x = 0; x < width; ++x)
            {
                row_out[x] = tree.quantize(row[x]);
            }
        }
        save_as_png(file, palette, reduced_image, width, height, 8, compression, strategy, alphaTable, use_miniz);
    }
    else if (palette.size() == 1)
    {
        // 1 color image ->  write 1-bit color depth PNG
        unsigned image_width  = ((width + 15) >> 3) & ~1U; // 1-bit image, round up to 16-bit boundary
        unsigned image_height = height;
        image_data_8 reduced_image(image_width, image_height);
        reduced_image.set(0);
        save_as_png(file, palette, reduced_image, width, height, 1, compression, strategy, alphaTable, use_miniz);
    }
    else
    {
        // <=16 colors -> write 4-bit color depth PNG
        unsigned image_width  = ((width + 7) >> 1) & ~3U; // 4-bit image, round up to 32-bit boundary
        unsigned image_height = height;
        image_data_8 reduced_image(image_width, image_height);
        for (unsigned y = 0; y < height; ++y)
        {
            mapnik::image_data_32::pixel_type const * row = image.getRow(y);
            mapnik::image_data_8::pixel_type  * row_out = reduced_image.getRow(y);
            byte index = 0;
            for (unsigned x = 0; x < width; ++x)
            {

                index = tree.quantize(row[x]);
                if (x%2 == 0)
                {
                    index = index<<4;
                }
                row_out[x>>1] |= index;
            }
        }
        save_as_png(file, palette, reduced_image, width, height, 4, compression, strategy, alphaTable, use_miniz);
    }
}

template <typename T1,typename T2>
void save_as_png8_hex(T1 & file,
                      T2 const& image,
                      int colors = 256,
                      int compression = Z_DEFAULT_COMPRESSION,
                      int strategy = Z_DEFAULT_STRATEGY,
                      int trans_mode = -1,
                      double gamma = 2.0,
                      bool use_miniz = false)
{
    unsigned width = image.width();
    unsigned height = image.height();

    // structure for color quantization
    hextree<mapnik::rgba> tree(colors);
    if (trans_mode >= 0)
    {
        tree.setTransMode(trans_mode);
    }
    if (gamma > 0)
    {
        tree.setGamma(gamma);
    }

    for (unsigned y = 0; y < height; ++y)
    {
        typename T2::pixel_type const * row = image.getRow(y);
        for (unsigned x = 0; x < width; ++x)
        {
            unsigned val = row[x];
            tree.insert(mapnik::rgba(U2RED(val), U2GREEN(val), U2BLUE(val), U2ALPHA(val)));
        }
    }

    //transparency values per palette index
    std::vector<mapnik::rgba> pal;
    tree.create_palette(pal);
    assert(int(pal.size()) <= colors);
    std::vector<mapnik::rgb> palette;
    std::vector<unsigned> alphaTable;
    for(unsigned i=0; i<pal.size(); i++)
    {
        palette.push_back(rgb(pal[i].r, pal[i].g, pal[i].b));
        alphaTable.push_back(pal[i].a);
    }

    save_as_png8<T1, T2, hextree<mapnik::rgba> >(file, image, tree, palette, alphaTable, compression, strategy, use_miniz);
}

template <typename T1, typename T2>
void save_as_png8_pal(T1 & file,
                      T2 const& image,
                      rgba_palette const& pal,
                      int compression = Z_DEFAULT_COMPRESSION,
                      int strategy = Z_DEFAULT_STRATEGY,
                      bool use_miniz = false)
{
    save_as_png8<T1, T2, rgba_palette>(file, image, pal, pal.palette(), pal.alphaTable(), compression, strategy, use_miniz);
}

}

#endif // MAPNIK_PNG_IO_HPP