This file is indexed.

/usr/include/mapnik/sparsehash/internal/hashtable-common.h is in libmapnik-dev 2.2.0+ds1-6build2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
// Copyright (c) 2010, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// ---
//
// Provides classes shared by both sparse and dense hashtable.
//
// sh_hashtable_settings has parameters for growing and shrinking
// a hashtable.  It also packages zero-size functor (ie. hasher).
//
// Other functions and classes provide common code for serializing
// and deserializing hashtables to a stream (such as a FILE*).

#ifndef UTIL_GTL_HASHTABLE_COMMON_H_
#define UTIL_GTL_HASHTABLE_COMMON_H_

#include <mapnik/sparsehash/internal/sparseconfig.h>
#include <assert.h>
#include <stdio.h>
#include <stddef.h>                  // for size_t
#include <iosfwd>
#include <stdexcept>                 // For length_error

_START_GOOGLE_NAMESPACE_

template <bool> struct SparsehashCompileAssert { };
#define SPARSEHASH_COMPILE_ASSERT(expr, msg) \
  typedef SparsehashCompileAssert<(bool(expr))> msg[bool(expr) ? 1 : -1]

namespace sparsehash_internal {

// Adaptor methods for reading/writing data from an INPUT or OUPTUT
// variable passed to serialize() or unserialize().  For now we
// have implemented INPUT/OUTPUT for FILE*, istream*/ostream* (note
// they are pointers, unlike typical use), or else a pointer to
// something that supports a Read()/Write() method.
//
// For technical reasons, we implement read_data/write_data in two
// stages.  The actual work is done in *_data_internal, which takes
// the stream argument twice: once as a template type, and once with
// normal type information.  (We only use the second version.)  We do
// this because of how C++ picks what function overload to use.  If we
// implemented this the naive way:
//    bool read_data(istream* is, const void* data, size_t length);
//    template<typename T> read_data(T* fp,  const void* data, size_t length);
// C++ would prefer the second version for every stream type except
// istream.  However, we want C++ to prefer the first version for
// streams that are *subclasses* of istream, such as istringstream.
// This is not possible given the way template types are resolved.  So
// we split the stream argument in two, one of which is templated and
// one of which is not.  The specialized functions (like the istream
// version above) ignore the template arg and use the second, 'type'
// arg, getting subclass matching as normal.  The 'catch-all'
// functions (the second version above) use the template arg to deduce
// the type, and use a second, void* arg to achieve the desired
// 'catch-all' semantics.

// ----- low-level I/O for FILE* ----

template<typename Ignored>
inline bool read_data_internal(Ignored*, FILE* fp,
                               void* data, size_t length) {
  return fread(data, length, 1, fp) == 1;
}

template<typename Ignored>
inline bool write_data_internal(Ignored*, FILE* fp,
                                const void* data, size_t length) {
  return fwrite(data, length, 1, fp) == 1;
}

// ----- low-level I/O for iostream ----

// We want the caller to be responsible for #including <iostream>, not
// us, because iostream is a big header!  According to the standard,
// it's only legal to delay the instantiation the way we want to if
// the istream/ostream is a template type.  So we jump through hoops.
template<typename ISTREAM>
inline bool read_data_internal_for_istream(ISTREAM* fp,
                                           void* data, size_t length) {
  return fp->read(reinterpret_cast<char*>(data), length).good();
}
template<typename Ignored>
inline bool read_data_internal(Ignored*, std::istream* fp,
                               void* data, size_t length) {
  return read_data_internal_for_istream(fp, data, length);
}

template<typename OSTREAM>
inline bool write_data_internal_for_ostream(OSTREAM* fp,
                                            const void* data, size_t length) {
  return fp->write(reinterpret_cast<const char*>(data), length).good();
}
template<typename Ignored>
inline bool write_data_internal(Ignored*, std::ostream* fp,
                                const void* data, size_t length) {
  return write_data_internal_for_ostream(fp, data, length);
}

// ----- low-level I/O for custom streams ----

// The INPUT type needs to support a Read() method that takes a
// buffer and a length and returns the number of bytes read.
template <typename INPUT>
inline bool read_data_internal(INPUT* fp, void*,
                               void* data, size_t length) {
  return static_cast<size_t>(fp->Read(data, length)) == length;
}

// The OUTPUT type needs to support a Write() operation that takes
// a buffer and a length and returns the number of bytes written.
template <typename OUTPUT>
inline bool write_data_internal(OUTPUT* fp, void*,
                                const void* data, size_t length) {
  return static_cast<size_t>(fp->Write(data, length)) == length;
}

// ----- low-level I/O: the public API ----

template <typename INPUT>
inline bool read_data(INPUT* fp, void* data, size_t length) {
  return read_data_internal(fp, fp, data, length);
}

template <typename OUTPUT>
inline bool write_data(OUTPUT* fp, const void* data, size_t length) {
  return write_data_internal(fp, fp, data, length);
}

// Uses read_data() and write_data() to read/write an integer.
// length is the number of bytes to read/write (which may differ
// from sizeof(IntType), allowing us to save on a 32-bit system
// and load on a 64-bit system).  Excess bytes are taken to be 0.
// INPUT and OUTPUT must match legal inputs to read/write_data (above).
template <typename INPUT, typename IntType>
bool read_bigendian_number(INPUT* fp, IntType* value, size_t length) {
  *value = 0;
  unsigned char byte;
  // We require IntType to be unsigned or else the shifting gets all screwy.
  SPARSEHASH_COMPILE_ASSERT(static_cast<IntType>(-1) > static_cast<IntType>(0),
                            serializing_int_requires_an_unsigned_type);
  for (size_t i = 0; i < length; ++i) {
    if (!read_data(fp, &byte, sizeof(byte))) return false;
    *value |= static_cast<IntType>(byte) << ((length - 1 - i) * 8);
  }
  return true;
}

template <typename OUTPUT, typename IntType>
bool write_bigendian_number(OUTPUT* fp, IntType value, size_t length) {
  unsigned char byte;
  // We require IntType to be unsigned or else the shifting gets all screwy.
  SPARSEHASH_COMPILE_ASSERT(static_cast<IntType>(-1) > static_cast<IntType>(0),
                            serializing_int_requires_an_unsigned_type);
  for (size_t i = 0; i < length; ++i) {
    byte = (sizeof(value) <= length-1 - i)
        ? 0 : static_cast<unsigned char>((value >> ((length-1 - i) * 8)) & 255);
    if (!write_data(fp, &byte, sizeof(byte))) return false;
  }
  return true;
}

// If your keys and values are simple enough, you can pass this
// serializer to serialize()/unserialize().  "Simple enough" means
// value_type is a POD type that contains no pointers.  Note,
// however, we don't try to normalize endianness.
// This is the type used for NopointerSerializer.
template <typename value_type> struct pod_serializer {
  template <typename INPUT>
  bool operator()(INPUT* fp, value_type* value) const {
    return read_data(fp, value, sizeof(*value));
  }

  template <typename OUTPUT>
  bool operator()(OUTPUT* fp, const value_type& value) const {
    return write_data(fp, &value, sizeof(value));
  }
};


// Settings contains parameters for growing and shrinking the table.
// It also packages zero-size functor (ie. hasher).
//
// It does some munging of the hash value in cases where we think
// (fear) the original hash function might not be very good.  In
// particular, the default hash of pointers is the identity hash,
// so probably all the low bits are 0.  We identify when we think
// we're hashing a pointer, and chop off the low bits.  Note this
// isn't perfect: even when the key is a pointer, we can't tell
// for sure that the hash is the identity hash.  If it's not, this
// is needless work (and possibly, though not likely, harmful).

template<typename Key, typename HashFunc,
         typename SizeType, int HT_MIN_BUCKETS>
class sh_hashtable_settings : public HashFunc {
 public:
  typedef Key key_type;
  typedef HashFunc hasher;
  typedef SizeType size_type;

 public:
  sh_hashtable_settings(const hasher& hf,
                        const float ht_occupancy_flt,
                        const float ht_empty_flt)
      : hasher(hf),
        enlarge_threshold_(0),
        shrink_threshold_(0),
        consider_shrink_(false),
        use_empty_(false),
        use_deleted_(false),
        num_ht_copies_(0) {
    set_enlarge_factor(ht_occupancy_flt);
    set_shrink_factor(ht_empty_flt);
  }

  size_type hash(const key_type& v) const {
    // We munge the hash value when we don't trust hasher::operator().
    return hash_munger<Key>::MungedHash(hasher::operator()(v));
  }

  float enlarge_factor() const {
    return enlarge_factor_;
  }
  void set_enlarge_factor(float f) {
    enlarge_factor_ = f;
  }
  float shrink_factor() const {
    return shrink_factor_;
  }
  void set_shrink_factor(float f) {
    shrink_factor_ = f;
  }

  size_type enlarge_threshold() const {
    return enlarge_threshold_;
  }
  void set_enlarge_threshold(size_type t) {
    enlarge_threshold_ = t;
  }
  size_type shrink_threshold() const {
    return shrink_threshold_;
  }
  void set_shrink_threshold(size_type t) {
    shrink_threshold_ = t;
  }

  size_type enlarge_size(size_type x) const {
    return static_cast<size_type>(x * enlarge_factor_);
  }
  size_type shrink_size(size_type x) const {
    return static_cast<size_type>(x * shrink_factor_);
  }

  bool consider_shrink() const {
    return consider_shrink_;
  }
  void set_consider_shrink(bool t) {
    consider_shrink_ = t;
  }

  bool use_empty() const {
    return use_empty_;
  }
  void set_use_empty(bool t) {
    use_empty_ = t;
  }

  bool use_deleted() const {
    return use_deleted_;
  }
  void set_use_deleted(bool t) {
    use_deleted_ = t;
  }

  size_type num_ht_copies() const {
    return static_cast<size_type>(num_ht_copies_);
  }
  void inc_num_ht_copies() {
    ++num_ht_copies_;
  }

  // Reset the enlarge and shrink thresholds
  void reset_thresholds(size_type num_buckets) {
    set_enlarge_threshold(enlarge_size(num_buckets));
    set_shrink_threshold(shrink_size(num_buckets));
    // whatever caused us to reset already considered
    set_consider_shrink(false);
  }

  // Caller is resposible for calling reset_threshold right after
  // set_resizing_parameters.
  void set_resizing_parameters(float shrink, float grow) {
    assert(shrink >= 0.0);
    assert(grow <= 1.0);
    if (shrink > grow/2.0f)
      shrink = grow / 2.0f;     // otherwise we thrash hashtable size
    set_shrink_factor(shrink);
    set_enlarge_factor(grow);
  }

  // This is the smallest size a hashtable can be without being too crowded
  // If you like, you can give a min #buckets as well as a min #elts
  size_type min_buckets(size_type num_elts, size_type min_buckets_wanted) {
    float enlarge = enlarge_factor();
    size_type sz = HT_MIN_BUCKETS;             // min buckets allowed
    while ( sz < min_buckets_wanted ||
            num_elts >= static_cast<size_type>(sz * enlarge) ) {
      // This just prevents overflowing size_type, since sz can exceed
      // max_size() here.
      if (static_cast<size_type>(sz * 2) < sz) {
        throw std::length_error("resize overflow");  // protect against overflow
      }
      sz *= 2;
    }
    return sz;
  }

 private:
  template<class HashKey> class hash_munger {
   public:
    static size_t MungedHash(size_t hash) {
      return hash;
    }
  };
  // This matches when the hashtable key is a pointer.
  template<class HashKey> class hash_munger<HashKey*> {
   public:
    static size_t MungedHash(size_t hash) {
      // TODO(csilvers): consider rotating instead:
      //    static const int shift = (sizeof(void *) == 4) ? 2 : 3;
      //    return (hash << (sizeof(hash) * 8) - shift)) | (hash >> shift);
      // This matters if we ever change sparse/dense_hash_* to compare
      // hashes before comparing actual values.  It's speedy on x86.
      return hash / sizeof(void*);   // get rid of known-0 bits
    }
  };

  size_type enlarge_threshold_;  // table.size() * enlarge_factor
  size_type shrink_threshold_;   // table.size() * shrink_factor
  float enlarge_factor_;         // how full before resize
  float shrink_factor_;          // how empty before resize
  // consider_shrink=true if we should try to shrink before next insert
  bool consider_shrink_;
  bool use_empty_;    // used only by densehashtable, not sparsehashtable
  bool use_deleted_;  // false until delkey has been set
  // num_ht_copies is a counter incremented every Copy/Move
  unsigned int num_ht_copies_;
};

}  // namespace sparsehash_internal

#undef SPARSEHASH_COMPILE_ASSERT
_END_GOOGLE_NAMESPACE_

#endif  // UTIL_GTL_HASHTABLE_COMMON_H_