/usr/include/meep.hpp is in libmeep-lam4-dev 1.1.1-10.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 | /* Copyright (C) 2005-2009 Massachusetts Institute of Technology
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2, or (at your option)
% any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software Foundation,
% Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#ifndef MEEP_H
#define MEEP_H
#include <stdio.h>
#include <math.h>
#include "meep/vec.hpp"
#include "meep/mympi.hpp"
namespace meep {
/* We use the type realnum for large arrays, e.g. the fields.
For local variables and small arrays, we use double precision,
but for things like the fields we can often get away with
single precision (since the errors are not dominated by roundoff).
However, we will default to using double-precision for large
arrays, as the factor of two in memory and the moderate increase
in speed currently don't seem worth the loss of precision. */
#define MEEP_SINGLE 0 // 1 for single precision, 0 for double
#if MEEP_SINGLE
typedef float realnum;
#else
typedef double realnum;
#endif
extern bool quiet; // if true, suppress all non-error messages from Meep
const double pi = 3.141592653589793238462643383276;
const double infinity = HUGE_VAL;
#ifdef NAN
const double nan = NAN;
#else
const double nan = -7.0415659787563146e103; // ideally, a value never encountered in practice
#endif
class polarizability_identifier {
public:
field_type ft;
double gamma, omeganot;
bool operator==(const polarizability_identifier &);
};
class polarizability;
class polarization;
class grace;
// h5file.cpp: HDF5 file I/O. Most users, if they use this
// class at all, will only use the constructor to open the file, and
// will otherwise use the fields::output_hdf5 functions.
class h5file {
public:
typedef enum {
READONLY, READWRITE, WRITE
} access_mode;
h5file(const char *filename_, access_mode m=READWRITE, bool parallel_=true);
~h5file(); // closes the files (and any open dataset)
bool ok();
realnum *read(const char *dataname, int *rank, int *dims, int maxrank);
void write(const char *dataname, int rank, const int *dims, realnum *data,
bool single_precision = true);
char *read(const char *dataname);
void write(const char *dataname, const char *data);
void create_data(const char *dataname, int rank, const int *dims,
bool append_data = false,
bool single_precision = true);
void extend_data(const char *dataname, int rank, const int *dims);
void create_or_extend_data(const char *dataname, int rank,
const int *dims,
bool append_data, bool single_precision);
void write_chunk(int rank, const int *chunk_start, const int *chunk_dims,
realnum *data);
void done_writing_chunks();
void read_size(const char *dataname, int *rank, int *dims, int maxrank);
void read_chunk(int rank, const int *chunk_start, const int *chunk_dims,
realnum *data);
void remove();
void remove_data(const char *dataname);
const char *file_name() const { return filename; }
void prevent_deadlock(); // hackery for exclusive mode
private:
access_mode mode;
char *filename;
bool parallel;
bool is_cur(const char *dataname);
void unset_cur();
void set_cur(const char *dataname, void *data_id);
char *cur_dataname;
bool cur_append_data;
/* linked list to keep track of which datasets we are extending...
this is necessary so that create_or_extend_data can know whether
to create (overwrite) a dataset or extend it. */
struct extending_s {
int dindex;
char *dataname;
struct extending_s *next;
} *extending;
extending_s *get_extending(const char *dataname) const;
/* store hid_t values as hid_t* cast to void*, so that
files including meep.h don't need hdf5.h */
void *id; /* file */
void *cur_id; /* dataset, if any */
void *get_id(); // get current (file) id, opening/creating file if needed
void close_id();
};
typedef double (*pml_profile_func)(double u, void *func_data);
#define DEFAULT_SUBPIXEL_TOL 1e-4
#define DEFAULT_SUBPIXEL_MAXEVAL 100000
/* This class is used to compute position-dependent material properties
like the dielectric function, permeability (mu), polarizability sigma,
nonlinearities, et cetera. Simple cases of stateless functions are
handled by canned subclasses below, but more complicated cases
can be handled by creating a user-defined subclass of material_function.
It is useful to group different properties into one class because
it is likely that complicated implementations will share state between
properties. */
class material_function {
material_function(const material_function &ef) {(void)ef;} // prevent copying
public:
material_function() : omega(nan), gamma(nan) {}
virtual ~material_function() {}
/* Specify a restricted grid_volume: all subsequent eps/sigma/etc
calls will be for points inside v, until the next set_volume. */
virtual void set_volume(const volume &v) {(void)v;}
virtual void unset_volume(void) {} // unrestrict the grid_volume
virtual double chi1p1(field_type ft, const vec &r) { (void)ft; (void)r; return 1.0; }
/* scalar dielectric function */
virtual double eps(const vec &r) { return chi1p1(E_stuff, r); }
/* scalar permeability function */
virtual bool has_mu() { return false; } /* true if mu != 1 */
virtual double mu(const vec &r) { return chi1p1(H_stuff, r); }
/* scalar conductivity function */
virtual bool has_conductivity(component c) { (void)c; return false; }
virtual double conductivity(component c, const vec &r) {
(void) c; (void)r; return 0.0; }
// fallback routine based on spherical quadrature
vec normal_vector(field_type ft, const volume &v);
/* Return c'th row of effective 1/(1+chi1) tensor in the given grid_volume v
... virtual so that e.g. libctl can override with more-efficient
libctlgeom-based routines. maxeval == 0 if no averaging desired. */
virtual void eff_chi1inv_row(component c, double chi1inv_row[3],
const volume &v,
double tol=DEFAULT_SUBPIXEL_TOL,
int maxeval=DEFAULT_SUBPIXEL_MAXEVAL);
/* polarizability sigma function: return c'th row of tensor */
virtual void sigma_row(component c, double sigrow[3], const vec &r) {
(void) c; (void) r; sigrow[0] = sigrow[1] = sigrow[2] = 0.0;
}
/* specify polarizability used for subsequent calls to sigma(r) */
virtual void set_polarizability(field_type ft, double omega_, double gamma_){
pol_ft=ft; omega=omega_; gamma=gamma_;
}
// Nonlinear susceptibilities
virtual bool has_chi3(component c) { (void)c; return false; }
virtual double chi3(component c, const vec &r) { (void)c; (void)r; return 0.0; }
virtual bool has_chi2(component c) { (void)c; return false; }
virtual double chi2(component c, const vec &r) { (void)c; (void)r; return 0.0; }
// TODO: dielectric tensor, ...
protected:
// current polarizability for calls to sigma(r):
field_type pol_ft;
double omega, gamma;
};
class simple_material_function : public material_function {
double (*f)(const vec &);
public:
simple_material_function(double (*func)(const vec &)) { f = func; }
virtual ~simple_material_function() {}
virtual double chi1p1(field_type ft, const vec &r) { (void)ft; return f(r); }
virtual double eps(const vec &r) { return f(r); }
virtual double mu(const vec &r) { return f(r); }
virtual double conductivity(component c, const vec &r) {
(void)c; return f(r); }
virtual void sigma_row(component c, double sigrow[3], const vec &r) {
sigrow[0] = sigrow[1] = sigrow[2] = 0.0;
sigrow[component_index(c)] = f(r);
}
virtual double chi3(component c, const vec &r) { (void)c; return f(r); }
virtual double chi2(component c, const vec &r) { (void)c; return f(r); }
};
class structure;
class structure_chunk {
public:
double a, Courant, dt; // res. a, Courant num., and timestep dt=Courant/a
realnum *chi3[NUM_FIELD_COMPONENTS], *chi2[NUM_FIELD_COMPONENTS];
realnum *chi1inv[NUM_FIELD_COMPONENTS][5];
bool trivial_chi1inv[NUM_FIELD_COMPONENTS][5];
realnum *conductivity[NUM_FIELD_COMPONENTS][5];
realnum *condinv[NUM_FIELD_COMPONENTS][5]; // cache of 1/(1+conduct*dt/2)
bool condinv_stale; // true if condinv needs to be recomputed
double *sig[5], *siginv[5]; // conductivity array for uPML
int sigsize[5]; // conductivity array size
grid_volume gv; // integer grid_volume that could be bigger than non-overlapping v below
volume v;
polarizability *pb;
int refcount; // reference count of objects using this structure_chunk
~structure_chunk();
structure_chunk(const grid_volume &gv,
const volume &vol_limit, double Courant, int proc_num);
structure_chunk(const structure_chunk *);
void set_chi1inv(component c, material_function &eps,
bool use_anisotropic_averaging,
double tol, int maxeval);
bool has_chi1inv(component c, direction d) const;
void set_conductivity(component c, material_function &eps);
void update_condinv();
void set_chi3(component c, material_function &eps);
void set_chi2(component c, material_function &eps);
void use_pml(direction, double dx, double boundary_loc, double Rasymptotic,
pml_profile_func pml_profile, void *pml_profile_data,
double pml_profile_integral);
void add_polarizability(material_function &sigma, field_type ft, double omega, double gamma);
void mix_with(const structure_chunk *, double);
int n_proc() const { return the_proc; } // Says which proc owns me!
int is_mine() const { return the_is_mine; }
void remove_polarizabilities();
// monitor.cpp
double get_chi1inv(component, direction, const ivec &iloc) const;
double get_inveps(component c, direction d, const ivec &iloc) const {
return get_chi1inv(c, d, iloc); }
double max_eps() const;
private:
double pml_fmin;
int the_proc;
int the_is_mine;
};
double pml_quadratic_profile(double, void*);
// linked list of descriptors for boundary regions (currently just for PML)
class boundary_region {
public:
typedef enum { NOTHING_SPECIAL, PML } boundary_region_kind;
boundary_region() :
kind(NOTHING_SPECIAL), thickness(0.0), Rasymptotic(1e-16), pml_profile(NULL), pml_profile_data(NULL), pml_profile_integral(1.0), d(NO_DIRECTION), side(Low), next(0) {}
boundary_region(boundary_region_kind kind, double thickness, double Rasymptotic, pml_profile_func pml_profile, void* pml_profile_data, double pml_profile_integral, direction d, boundary_side side, boundary_region *next = 0) : kind(kind), thickness(thickness), Rasymptotic(Rasymptotic), pml_profile(pml_profile), pml_profile_data(pml_profile_data), pml_profile_integral(pml_profile_integral), d(d), side(side), next(next) {}
boundary_region(const boundary_region &r) : kind(r.kind), thickness(r.thickness), Rasymptotic(r.Rasymptotic), pml_profile(r.pml_profile), pml_profile_data(r.pml_profile_data), pml_profile_integral(r.pml_profile_integral), d(r.d), side(r.side) {
next = r.next ? new boundary_region(*r.next) : 0;
}
~boundary_region() { if (next) delete next; }
void operator=(const boundary_region &r) {
kind = r.kind; thickness = r.thickness; Rasymptotic = r.Rasymptotic;
pml_profile = r.pml_profile; pml_profile_data = r.pml_profile_data;
pml_profile_integral = r.pml_profile_integral;
d = r.d; side = r.side;
if (next) delete next;
next = r.next ? new boundary_region(*r.next) : 0;
}
boundary_region operator+(const boundary_region &r0) const {
boundary_region r(*this), *cur = &r;
while (cur->next) cur = cur->next;
cur->next = new boundary_region(r0);
return r;
}
boundary_region operator*(double strength_mult) const {
boundary_region r(*this), *cur = &r;
while (cur) {
cur->Rasymptotic = pow(cur->Rasymptotic, strength_mult);
cur = cur->next;
}
return r;
}
void apply(structure *s) const;
void apply(const structure *s, structure_chunk *sc) const;
bool check_ok(const grid_volume &gv) const;
private:
boundary_region_kind kind;
double thickness, Rasymptotic;
pml_profile_func pml_profile;
void *pml_profile_data;
double pml_profile_integral;
direction d;
boundary_side side;
boundary_region *next;
};
boundary_region pml(double thickness, direction d, boundary_side side);
boundary_region pml(double thickness, direction d);
boundary_region pml(double thickness);
#define no_pml() boundary_region()
class structure {
public:
structure_chunk **chunks;
int num_chunks;
grid_volume gv, user_volume;
double a, Courant, dt; // res. a, Courant num., and timestep dt=Courant/a
volume v;
symmetry S;
const char *outdir;
grid_volume *effort_volumes;
double *effort;
int num_effort_volumes;
~structure();
structure();
structure(const grid_volume &gv, material_function &eps,
const boundary_region &br = boundary_region(),
const symmetry &s = meep::identity(),
int num_chunks = 0, double Courant = 0.5,
bool use_anisotropic_averaging=false,
double tol=DEFAULT_SUBPIXEL_TOL,
int maxeval=DEFAULT_SUBPIXEL_MAXEVAL);
structure(const grid_volume &gv, double eps(const vec &),
const boundary_region &br = boundary_region(),
const symmetry &s = meep::identity(),
int num_chunks = 0, double Courant = 0.5,
bool use_anisotropic_averaging=false,
double tol=DEFAULT_SUBPIXEL_TOL,
int maxeval=DEFAULT_SUBPIXEL_MAXEVAL);
structure(const structure *);
structure(const structure &);
void set_materials(material_function &mat,
bool use_anisotropic_averaging=true,
double tol=DEFAULT_SUBPIXEL_TOL,
int maxeval=DEFAULT_SUBPIXEL_MAXEVAL);
void set_chi1inv(component c, material_function &eps,
bool use_anisotropic_averaging=true,
double tol=DEFAULT_SUBPIXEL_TOL,
int maxeval=DEFAULT_SUBPIXEL_MAXEVAL);
bool has_chi1inv(component c, direction d) const;
void set_epsilon(material_function &eps,
bool use_anisotropic_averaging=true,
double tol=DEFAULT_SUBPIXEL_TOL,
int maxeval=DEFAULT_SUBPIXEL_MAXEVAL);
void set_epsilon(double eps(const vec &),
bool use_anisotropic_averaging=true,
double tol=DEFAULT_SUBPIXEL_TOL,
int maxeval=DEFAULT_SUBPIXEL_MAXEVAL);
void set_mu(material_function &eps,
bool use_anisotropic_averaging=true,
double tol=DEFAULT_SUBPIXEL_TOL,
int maxeval=DEFAULT_SUBPIXEL_MAXEVAL);
void set_mu(double mu(const vec &),
bool use_anisotropic_averaging=true,
double tol=DEFAULT_SUBPIXEL_TOL,
int maxeval=DEFAULT_SUBPIXEL_MAXEVAL);
void set_conductivity(component c, material_function &conductivity);
void set_conductivity(component C, double conductivity(const vec &));
void set_chi3(component c, material_function &eps);
void set_chi3(material_function &eps);
void set_chi3(double eps(const vec &));
void set_chi2(component c, material_function &eps);
void set_chi2(material_function &eps);
void set_chi2(double eps(const vec &));
polarizability_identifier
add_polarizability(double sigma(const vec &), field_type ft, double omega, double gamma);
polarizability_identifier
add_polarizability(material_function &sigma, field_type ft, double omega, double gamma);
polarizability_identifier
add_polarizability(double sigma(const vec &), double omega, double gamma) {
return add_polarizability(sigma, E_stuff, omega, gamma); }
polarizability_identifier
add_polarizability(material_function &sigma, double omega, double gamma) {
return add_polarizability(sigma, E_stuff, omega, gamma); }
void remove_polarizabilities();
void set_output_directory(const char *name);
void mix_with(const structure *, double);
bool equal_layout(const structure &) const;
void print_layout(void) const;
// monitor.cpp
double get_chi1inv(component, direction, const ivec &origloc) const;
double get_chi1inv(component, direction, const vec &loc) const;
double get_inveps(component c, direction d, const ivec &origloc) const {
return get_chi1inv(c, d, origloc); }
double get_inveps(component c, direction d, const vec &loc) const {
return get_chi1inv(c, d, loc); }
double get_eps(const vec &loc) const;
double get_mu(const vec &loc) const;
double max_eps() const;
friend class boundary_region;
private:
void use_pml(direction d, boundary_side b, double dx);
void add_to_effort_volumes(const grid_volume &new_effort_volume,
double extra_effort);
void choose_chunkdivision(const grid_volume &gv, int num_chunks,
const boundary_region &br, const symmetry &s);
void check_chunks();
void changing_chunks();
};
class src_vol;
class bandsdata;
class fields;
class fields_chunk;
class flux_vol;
// Time-dependence of a current source, intended to be overridden by
// subclasses. current() and dipole() are be related by
// current = d(dipole)/dt (or rather, the finite-difference equivalent).
class src_time {
public:
// the following variable specifies whether the current
// source is specified as a current or as an integrated
// current (a dipole moment), if possible. In the original Meep,
// by default electric sources are integrated and magnetic
// sources are not, but this may change.
bool is_integrated;
src_time() { is_integrated = true; current_time = nan; current_current = 0.0; next = NULL; }
virtual ~src_time() { delete next; }
src_time(const src_time &t) {
is_integrated = t.is_integrated;
current_time = t.current_time;
current_current = t.current_current;
current_dipole = t.current_dipole;
if (t.next) next = t.next->clone(); else next = NULL;
}
complex<double> dipole() const { return current_dipole; }
complex<double> current() const { return current_current; }
void update(double time, double dt) {
if (time != current_time) {
current_dipole = dipole(time);
current_current = current(time, dt);
current_time = time;
}
}
// subclasses *can* override this method in order to specify the
// current directly rather than as the derivative of dipole.
// in that case you would probably ignore the dt argument.
virtual complex<double> current(double time, double dt) const {
return ((dipole(time + dt) - dipole(time)) / dt);
}
double last_time_max() { return last_time_max(0.0); }
double last_time_max(double after);
src_time *add_to(src_time *others, src_time **added) const;
src_time *next;
// subclasses should override these methods:
virtual complex<double> dipole(double time) const { (void)time; return 0; }
virtual double last_time() const { return 0.0; }
virtual src_time *clone() const { return new src_time(*this); }
virtual bool is_equal(const src_time &t) const { (void)t; return 1; }
virtual complex<double> frequency() const { return 0.0; }
virtual void set_frequency(complex<double> f) { (void) f; }
private:
double current_time;
complex<double> current_dipole, current_current;
};
bool src_times_equal(const src_time &t1, const src_time &t2);
// Gaussian-envelope source with given frequency, width, peak-time, cutoff
class gaussian_src_time : public src_time {
public:
gaussian_src_time(double f, double fwidth, double s = 5.0);
gaussian_src_time(double f, double w, double start_time, double end_time);
virtual ~gaussian_src_time() {}
virtual complex<double> dipole(double time) const;
virtual double last_time() const { return float(peak_time + cutoff); };
virtual src_time *clone() const { return new gaussian_src_time(*this); }
virtual bool is_equal(const src_time &t) const;
virtual complex<double> frequency() const { return freq; }
virtual void set_frequency(complex<double> f) { freq = real(f); }
private:
double freq, width, peak_time, cutoff;
};
// Continuous (CW) source with (optional) slow turn-on and/or turn-off.
class continuous_src_time : public src_time {
public:
continuous_src_time(complex<double> f, double w = 0.0,
double st = 0.0, double et = infinity,
double s = 3.0) : freq(f), width(w), start_time(float(st)),
end_time(float(et)), slowness(s) {}
virtual ~continuous_src_time() {}
virtual complex<double> dipole(double time) const;
virtual double last_time() const { return end_time; };
virtual src_time *clone() const { return new continuous_src_time(*this); }
virtual bool is_equal(const src_time &t) const;
virtual complex<double> frequency() const { return freq; }
virtual void set_frequency(complex<double> f) { freq = f; }
private:
complex<double> freq;
double width, start_time, end_time, slowness;
};
// user-specified source function with start and end times
class custom_src_time : public src_time {
public:
custom_src_time(complex<double> (*func)(double t, void *), void *data,
double st = -infinity, double et = infinity)
: func(func), data(data), start_time(float(st)), end_time(float(et)) {}
virtual ~custom_src_time() {}
virtual complex<double> current(double time, double dt) const {
if (is_integrated) return src_time::current(time,dt);
else return dipole(time);
}
virtual complex<double> dipole(double time) const { float rtime = float(time);
if (rtime >= start_time && rtime <= end_time) return func(time,data); else return 0.0; }
virtual double last_time() const { return end_time; };
virtual src_time *clone() const { return new custom_src_time(*this); }
virtual bool is_equal(const src_time &t) const;
private:
complex<double> (*func)(double t, void *);
void *data;
double start_time, end_time;
};
class monitor_point {
public:
monitor_point();
~monitor_point();
vec loc;
double t;
complex<double> f[NUM_FIELD_COMPONENTS];
monitor_point *next;
complex<double> get_component(component);
double poynting_in_direction(direction d);
double poynting_in_direction(vec direction_v);
// When called with only its first four arguments, fourier_transform
// performs an FFT on its monitor points, putting the frequencies in f
// and the amplitudes in a. Yes, the frequencies are trivial and
// redundant, but this saves you the risk of making a mistake in
// converting your units. Note also, that in this case f is always a
// real number, although it's stored in a complex.
//
// Note that in either case, fourier_transform assumes that the monitor
// points are all equally spaced in time.
void fourier_transform(component w,
complex<double> **a, complex<double> **f, int *numout,
double fmin=0.0, double fmax=0.0, int maxbands=100);
// harminv works much like fourier_transform, except that it is not yet
// implemented.
void harminv(component w,
complex<double> **a, complex<double> **f,
int *numout, double fmin, double fmax,
int maxbands);
};
// dft.cpp
// this should normally only be created with fields::add_dft
class dft_chunk {
public:
dft_chunk(fields_chunk *fc_,
ivec is_, ivec ie_,
vec s0_, vec s1_, vec e0_, vec e1_,
double dV0_, double dV1_,
complex<double> scale_,
complex<double> extra_weight_,
component c_,
bool use_centered_grid,
const void *data_);
~dft_chunk();
void update_dft(double time);
void scale_dft(complex<double> scale);
void operator-=(const dft_chunk &chunk);
// the frequencies to loop_in_chunks
double omega_min, domega;
int Nomega;
component c; // component to DFT (possibly transformed by symmetry)
int N; // number of spatial points (on epsilon grid)
complex<realnum> *dft; // N x Nomega array of DFT values.
struct dft_chunk *next_in_chunk; // per-fields_chunk list of DFT chunks
struct dft_chunk *next_in_dft; // next for this particular DFT vol./component
/* When computing things like -0.5*|E|^2 for the stress tensor,
we cannot incorporate the minus sign into the scale factor
because we only ever compute |scale|^2. Thus, it is necessary
to store an additional weight factor with the dft_chunk to record
any additional negative or complex weight factor to be used
in computations involving the fourier-transformed fields. Because
it is used in computations involving dft[...], it needs to be public. */
complex<double> extra_weight;
private:
// parameters passed from field_integrate:
fields_chunk *fc;
ivec is, ie;
vec s0, s1, e0, e1;
double dV0, dV1;
bool sqrt_dV_and_interp_weights;
complex<double> scale; // scale factor * phase from shift and symmetry
// cache of exp(iwt) * scale, of length Nomega
complex<realnum> *dft_phase;
int avg1, avg2; // index offsets for average to get epsilon grid
};
void save_dft_hdf5(dft_chunk *dft_chunks, component c, h5file *file,
const char *dprefix = 0);
void load_dft_hdf5(dft_chunk *dft_chunks, component c, h5file *file,
const char *dprefix = 0);
void save_dft_hdf5(dft_chunk *dft_chunks, const char *name, h5file *file,
const char *dprefix = 0);
void load_dft_hdf5(dft_chunk *dft_chunks, const char *name, h5file *file,
const char *dprefix = 0);
// dft.cpp (normally created with fields::add_dft_flux)
class dft_flux {
public:
dft_flux(const component cE_, const component cH_,
dft_chunk *E_, dft_chunk *H_,
double fmin, double fmax, int Nf);
dft_flux(const dft_flux &f);
double *flux();
void save_hdf5(h5file *file, const char *dprefix = 0);
void load_hdf5(h5file *file, const char *dprefix = 0);
void operator-=(const dft_flux &fl) { if (E && fl.E) *E -= *fl.E; if (H && fl.H) *H -= *fl.H; }
void save_hdf5(fields &f, const char *fname, const char *dprefix = 0,
const char *prefix = 0);
void load_hdf5(fields &f, const char *fname, const char *dprefix = 0,
const char *prefix = 0);
void scale_dfts(complex<double> scale);
void remove();
double freq_min, dfreq;
int Nfreq;
dft_chunk *E, *H;
component cE, cH;
};
// stress.cpp (normally created with fields::add_dft_force)
class dft_force {
public:
dft_force(dft_chunk *offdiag1_, dft_chunk *offdiag2_, dft_chunk *diag_,
double fmin, double fmax, int Nf);
dft_force(const dft_force &f);
double *force();
void save_hdf5(h5file *file, const char *dprefix = 0);
void load_hdf5(h5file *file, const char *dprefix = 0);
void operator-=(const dft_force &fl);
void save_hdf5(fields &f, const char *fname, const char *dprefix = 0,
const char *prefix = 0);
void load_hdf5(fields &f, const char *fname, const char *dprefix = 0,
const char *prefix = 0);
void scale_dfts(complex<double> scale);
void remove();
double freq_min, dfreq;
int Nfreq;
dft_chunk *offdiag1, *offdiag2, *diag;
};
enum in_or_out { Incoming=0, Outgoing };
enum connect_phase { CONNECT_PHASE = 0, CONNECT_NEGATE=1, CONNECT_COPY=2 };
class fields_chunk {
public:
realnum *f[NUM_FIELD_COMPONENTS][2]; // fields at current time
// auxiliary fields needed for PML (at least in some components)
realnum *f_u[NUM_FIELD_COMPONENTS][2]; // integrated from D/B
realnum *f_w[NUM_FIELD_COMPONENTS][2]; // E/H integrated from these
realnum *f_cond[NUM_FIELD_COMPONENTS][2]; // aux field for PML+conductivity
/* sometimes, to synchronize the E and H fields, e.g. for computing
flux at a given time, we need to timestep H by 1/2; in this case
we save backup copies of (some of) the fields to resume timestepping */
realnum *f_backup[NUM_FIELD_COMPONENTS][2];
realnum *f_u_backup[NUM_FIELD_COMPONENTS][2];
realnum *f_w_backup[NUM_FIELD_COMPONENTS][2];
realnum *f_cond_backup[NUM_FIELD_COMPONENTS][2];
// used to store D-P and B-P, e.g. when P implements dispersive media
realnum *f_minus_p[NUM_FIELD_COMPONENTS][2];
realnum *f_rderiv_int; // cache of helper field for 1/r d(rf)/dr derivative
dft_chunk *dft_chunks;
realnum **zeroes[NUM_FIELD_TYPES]; // Holds pointers to metal points.
int num_zeroes[NUM_FIELD_TYPES];
realnum **connections[NUM_FIELD_TYPES][CONNECT_COPY+1][Outgoing+1];
int num_connections[NUM_FIELD_TYPES][CONNECT_COPY+1][Outgoing+1];
complex<realnum> *connection_phases[NUM_FIELD_TYPES];
polarization *pols[NUM_FIELD_TYPES], *olpols[NUM_FIELD_TYPES];
double a, Courant, dt; // res. a, Courant num., and timestep dt=Courant/a
grid_volume gv;
volume v;
double m; // angular dependence in cyl. coords
bool zero_fields_near_cylorigin; // fields=0 m pixels near r=0 for stability
double beta;
int is_real, store_pol_energy;
bandsdata *bands;
src_vol *sources[NUM_FIELD_TYPES];
structure_chunk *new_s;
structure_chunk *s;
const char *outdir;
fields_chunk(structure_chunk *, const char *outdir, double m,
bool store_pol_energy, double beta,
bool zero_fields_near_cylorigin);
fields_chunk(const fields_chunk &);
~fields_chunk();
// step.cpp
double peek_field(component, const vec &);
void use_real_fields();
bool have_component(component c, bool is_complex = false) {
switch (c) {
case Dielectric: case Permeability:
return !is_complex;
default:
return (f[c][0] && f[c][is_complex]);
}
}
double last_source_time();
// monitor.cpp
complex<double> get_field(component, const ivec &) const;
// for non-collective interpolation:
volume get_field_gv(component) const;
complex<double> get_field(component, const vec &) const;
double get_polarization_energy(const ivec &) const;
double my_polarization_energy(const ivec &) const;
double get_polarization_energy(const polarizability_identifier &, const ivec &) const;
double my_polarization_energy(const polarizability_identifier &, const ivec &) const;
double get_chi1inv(component, direction, const ivec &iloc) const;
complex<double> analytic_chi1(component c, double freq, const vec &) const;
void backup_component(component c);
void average_with_backup(component c);
void restore_component(component c);
void set_output_directory(const char *name);
void verbose(int gv=1) { verbosity = gv; }
double count_volume(component);
friend class fields;
int n_proc() const { return s->n_proc(); };
int is_mine() const { return s->is_mine(); };
// boundaries.cpp
void zero_metal(field_type);
// fields.cpp
void remove_sources();
void remove_polarizabilities();
void zero_fields();
bool update_eh(field_type ft, bool skip_w_components = false);
bool alloc_f(component c);
void figure_out_step_plan();
void set_solve_cw_omega(complex<double> omega) {
doing_solve_cw = true;
solve_cw_omega = omega;
}
void unset_solve_cw_omega() {
doing_solve_cw = false;
solve_cw_omega = 0.0;
}
private:
// we set a flag during cw_solve to replace some
// time-dependent stuff with the analogous frequency-domain operation
bool doing_solve_cw; // true when inside solve_cw
complex<double> solve_cw_omega; // current omega for solve_cw
int verbosity; // Turn on verbosity for debugging purposes...
// fields.cpp
bool have_plus_deriv[NUM_FIELD_COMPONENTS], have_minus_deriv[NUM_FIELD_COMPONENTS];
component plus_component[NUM_FIELD_COMPONENTS], minus_component[NUM_FIELD_COMPONENTS];
direction plus_deriv_direction[NUM_FIELD_COMPONENTS],
minus_deriv_direction[NUM_FIELD_COMPONENTS];
// bands.cpp
void record_bands(int tcount);
// step.cpp
void phase_in_material(structure_chunk *s);
void phase_material(int phasein_time);
bool step_db(field_type ft);
void step_source(field_type ft, bool including_integrated);
void update_pols(field_type ft);
void calc_sources(double time);
// initialize.cpp
void initialize_field(component, complex<double> f(const vec &));
void initialize_with_nth_te(int n, double kz);
void initialize_with_nth_tm(int n, double kz);
// boundaries.cpp
void alloc_extra_connections(field_type, connect_phase, in_or_out, int);
// dft.cpp
void update_dfts(double timeE, double timeH);
void changing_structure();
};
enum boundary_condition { Periodic=0, Metallic, Magnetic, None };
enum time_sink { Connecting, Stepping, Boundaries, MpiTime,
FieldOutput, FourierTransforming, Other };
typedef void (*field_chunkloop)(fields_chunk *fc, int ichunk, component cgrid,
ivec is, ivec ie,
vec s0, vec s1, vec e0, vec e1,
double dV0, double dV1,
ivec shift, complex<double> shift_phase,
const symmetry &S, int sn,
void *chunkloop_data);
typedef complex<double> (*field_function)(const complex<double> *fields,
const vec &loc,
void *integrand_data_);
typedef double (*field_rfunction)(const complex<double> *fields,
const vec &loc,
void *integrand_data_);
field_rfunction derived_component_func(derived_component c, const grid_volume &gv,
int &nfields, component cs[12]);
class fields {
public:
int num_chunks;
fields_chunk **chunks;
src_time *sources;
flux_vol *fluxes;
symmetry S;
// The following is an array that is num_chunks by num_chunks. Actually
// it is two arrays, one for the imaginary and one for the real part.
realnum **comm_blocks[NUM_FIELD_TYPES];
// This is the same size as each comm_blocks array, and store the sizes
// of the comm blocks themselves for each connection-phase type
int *comm_sizes[NUM_FIELD_TYPES][CONNECT_COPY+1];
int comm_size_tot(int f, int pair) const {
int sum = 0; for (int ip=0; ip<3; ++ip) sum+=comm_sizes[f][ip][pair];
return sum;
}
double a, dt; // The resolution a and timestep dt=Courant/a
grid_volume gv, user_volume;
volume v;
double m;
double beta;
int t, phasein_time, is_real;
complex<double> k[5], eikna[5];
double coskna[5], sinkna[5];
boundary_condition boundaries[2][5];
bandsdata *bands;
char *outdir;
// fields.cpp methods:
fields(structure *, double m=0, bool store_pol_energy=0, double beta=0,
bool zero_fields_near_cylorigin=true);
fields(const fields &);
~fields();
bool equal_layout(const fields &f) const;
void use_real_fields();
void zero_fields();
void remove_sources();
void remove_polarizabilities();
void remove_fluxes();
void reset();
// time.cpp
double time_spent_on(time_sink);
void print_times();
// boundaries.cpp
void set_boundary(boundary_side,direction,boundary_condition);
void use_bloch(direction d, double k) { use_bloch(d, (complex<double>) k); }
void use_bloch(direction, complex<double> kz);
void use_bloch(const vec &k);
vec lattice_vector(direction) const;
// update_eh.cpp
void update_eh(field_type ft, bool skip_w_components = false);
volume total_volume(void) const;
// h5fields.cpp:
// low-level function:
void output_hdf5(h5file *file, const char *dataname,
int num_fields, const component *components,
field_function fun, void *fun_data_, int reim,
const volume &where,
bool append_data = false,
bool single_precision = false);
// higher-level functions
void output_hdf5(const char *dataname, // OUTPUT COMPLEX-VALUED FUNCTION
int num_fields, const component *components,
field_function fun, void *fun_data_,
const volume &where,
h5file *file = 0,
bool append_data = false,
bool single_precision = false,
const char *prefix = 0,
bool real_part_only = false);
void output_hdf5(const char *dataname, // OUTPUT REAL-VALUED FUNCTION
int num_fields, const component *components,
field_rfunction fun, void *fun_data_,
const volume &where,
h5file *file = 0,
bool append_data = false,
bool single_precision = false,
const char *prefix = 0);
void output_hdf5(component c, // OUTPUT FIELD COMPONENT (or Dielectric)
const volume &where,
h5file *file = 0,
bool append_data = false,
bool single_precision = false,
const char *prefix = 0);
void output_hdf5(derived_component c, // OUTPUT DERIVED FIELD COMPONENT
const volume &where,
h5file *file = 0,
bool append_data = false,
bool single_precision = false,
const char *prefix = 0);
h5file *open_h5file(const char *name,
h5file::access_mode mode = h5file::WRITE,
const char *prefix = NULL, bool timestamp = false);
const char *h5file_name(const char *name,
const char *prefix = NULL, bool timestamp = false);
// step.cpp methods:
double last_step_output_wall_time;
int last_step_output_t;
void step();
// when comparing times, e.g. for source cutoffs, it
// is useful to round to float to avoid gratuitous sensitivity
// to floating-point roundoff error
inline double round_time() const { return float(t*dt); };
inline double time() const { return t*dt; };
// cw_fields.cpp:
bool solve_cw(double tol, int maxiters, complex<double> frequency, int L=2);
bool solve_cw(double tol = 1e-8, int maxiters = 10000, int L=2);
// sources.cpp:
double last_source_time();
void add_point_source(component c, double freq, double width, double peaktime,
double cutoff, const vec &, complex<double> amp = 1.0,
int is_continuous = 0);
void add_point_source(component c, const src_time &src,
const vec &, complex<double> amp = 1.0);
void add_volume_source(component c, const src_time &src,
const volume &,
complex<double> A(const vec &),
complex<double> amp = 1.0);
void add_volume_source(component c, const src_time &src,
const volume &,
complex<double> amp = 1.0);
void require_component(component c);
// mpb.cpp
void add_eigenmode_source(component c, const src_time &src,
const volume &where,
const volume &eig_vol,
int band_num, const vec &kpoint, int parity,
double eig_resolution, double eigensolver_tol,
complex<double> amp,
complex<double> A(const vec &) = 0);
// initialize.cpp:
void initialize_field(component, complex<double> f(const vec &));
void initialize_with_nth_te(int n);
void initialize_with_nth_tm(int n);
void initialize_with_n_te(int n);
void initialize_with_n_tm(int n);
int phase_in_material(const structure *s, double time);
int is_phasing();
// loop_in_chunks.cpp
void loop_in_chunks(field_chunkloop chunkloop, void *chunkloop_data,
const volume &where,
component cgrid = Centered,
bool use_symmetry = true,
bool snap_unit_dims = false);
// integrate.cpp
complex<double> integrate(int num_fields, const component *components,
field_function fun, void *fun_data_,
const volume &where,
double *maxabs = 0);
double integrate(int num_fields, const component *components,
field_rfunction fun, void *fun_data_,
const volume &where,
double *maxabs = 0);
complex<double> integrate2(const fields &fields2,
int num_fields1,
const component *components1,
int num_fields2,
const component *components2,
field_function integrand,
void *integrand_data_,
const volume &where,
double *maxabs = 0);
double integrate2(const fields &fields2,
int num_fields1, const component *components1,
int num_fields2, const component *components2,
field_rfunction integrand,
void *integrand_data_,
const volume &where,
double *maxabs = 0);
double max_abs(int num_fields, const component *components,
field_function fun, void *fun_data_,
const volume &where);
double max_abs(int num_fields, const component *components,
field_rfunction fun, void *fun_data_,
const volume &where);
double max_abs(int c, const volume &where);
double max_abs(component c, const volume &where);
double max_abs(derived_component c, const volume &where);
// dft.cpp
dft_chunk *add_dft(component c, const volume &where,
double freq_min, double freq_max, int Nfreq,
bool include_dV_and_interp_weights = true,
complex<double> weight = 1.0, dft_chunk *chunk_next = 0,
bool sqrt_dV_and_interp_weights = false,
complex<double> extra_weight = 1.0,
bool use_centered_grid = true);
dft_chunk *add_dft_pt(component c, const vec &where,
double freq_min, double freq_max, int Nfreq);
dft_chunk *add_dft(const volume_list *where,
double freq_min, double freq_max, int Nfreq,
bool include_dV = true);
void update_dfts();
dft_flux add_dft_flux(direction d, const volume &where,
double freq_min, double freq_max, int Nfreq);
dft_flux add_dft_flux_box(const volume &where,
double freq_min, double freq_max, int Nfreq);
dft_flux add_dft_flux_plane(const volume &where,
double freq_min, double freq_max, int Nfreq);
dft_flux add_dft_flux(const volume_list *where,
double freq_min, double freq_max, int Nfreq);
// stress.cpp
dft_force add_dft_force(const volume_list *where,
double freq_min, double freq_max, int Nfreq);
// monitor.cpp
double get_chi1inv(component, direction, const vec &loc) const;
double get_inveps(component c, direction d, const vec &loc) const {
return get_chi1inv(c, d, loc);
}
double get_eps(const vec &loc) const;
double get_mu(const vec &loc) const;
void get_point(monitor_point *p, const vec &) const;
monitor_point *get_new_point(const vec &, monitor_point *p=NULL) const;
complex<double> analytic_chi1(component,double freq, const vec &) const;
void prepare_for_bands(const vec &, double end_time, double fmax=0,
double qmin=1e300, double frac_pow_min=0.0);
void record_bands();
complex<double> get_band(int n, int maxbands=100);
void grace_bands(grace *, int maxbands=100);
void output_bands(FILE *, const char *, int maxbands=100);
complex<double> get_field(int c, const vec &loc) const;
complex<double> get_field(component c, const vec &loc) const;
double get_field(derived_component c, const vec &loc) const;
// energy_and_flux.cpp
void synchronize_magnetic_fields();
void restore_magnetic_fields();
double energy_in_box(const volume &);
double electric_energy_in_box(const volume &);
double magnetic_energy_in_box(const volume &);
double thermo_energy_in_box(const volume &);
double total_energy();
double field_energy_in_box(const volume &);
double field_energy_in_box(component c, const volume &);
double field_energy();
double flux_in_box_wrongH(direction d, const volume &);
double flux_in_box(direction d, const volume &);
flux_vol *add_flux_vol(direction d, const volume &where);
flux_vol *add_flux_plane(const volume &where);
flux_vol *add_flux_plane(const vec &p1, const vec &p2);
double electric_energy_max_in_box(const volume &where);
double modal_volume_in_box(const volume &where);
double electric_sqr_weighted_integral(double (*deps)(const vec &),
const volume &where);
double electric_energy_weighted_integral(double (*f)(const vec &),
const volume &where);
void set_output_directory(const char *name);
void verbose(int gv=1);
double count_volume(component);
// fields.cpp
bool have_component(component);
// material.cpp
double max_eps() const;
// step.cpp
void step_boundaries(field_type);
bool nosize_direction(direction d) const;
direction normal_direction(const volume &where) const;
// casimir.cpp
complex<double> casimir_stress_dct_integral(direction dforce,
direction dsource,
double mx, double my, double mz,
field_type ft,
volume where,
bool is_bloch = false);
void set_solve_cw_omega(complex<double> omega);
void unset_solve_cw_omega();
private:
int verbosity; // Turn on verbosity for debugging purposes...
int synchronized_magnetic_fields; // count number of nested synchs
double last_wall_time;
time_sink working_on, was_working_on;
double times_spent[Other+1];
// fields.cpp
void figure_out_step_plan();
// time.cpp
void am_now_working_on(time_sink);
void finished_working();
// boundaries.cpp
bool chunk_connections_valid;
void find_metals();
void disconnect_chunks();
void connect_chunks();
void connect_the_chunks(); // Intended to be ultra-private...
bool on_metal_boundary(const ivec &);
ivec ilattice_vector(direction) const;
bool locate_component_point(component *, ivec *, complex<double> *) const;
bool locate_point_in_user_volume(ivec *, complex<double> *phase) const;
void locate_volume_source_in_user_volume(const vec p1, const vec p2, vec newp1[8], vec newp2[8],
complex<double> kphase[8], int &ncopies) const;
// mympi.cpp
void boundary_communications(field_type);
// step.cpp
void phase_material();
void step_db(field_type ft);
void step_source(field_type ft, bool including_integrated = false);
void update_pols(field_type ft);
void calc_sources(double tim);
int cluster_some_bands_cleverly(double *tf, double *td, complex<double> *ta,
int num_freqs, int fields_considered, int maxbands,
complex<double> *fad, double *approx_power);
void out_bands(FILE *, const char *, int maxbands);
complex<double> *clever_cluster_bands(int maxbands, double *approx_power = NULL);
// monitor.cpp
complex<double> get_field(component c, const ivec &iloc) const;
double get_polarization_energy(const ivec &) const;
double get_polarization_energy(const vec &) const;
double get_polarization_energy(const polarizability_identifier &, const ivec &) const;
double get_polarization_energy(const polarizability_identifier &, const vec &) const;
double get_chi1inv(component, direction, const ivec &iloc) const;
};
class flux_vol {
public:
flux_vol(fields *f_, direction d_, const volume &where_) : where(where_) {
f = f_; d = d_; cur_flux = cur_flux_half = 0;
next = f->fluxes; f->fluxes = this;
}
~flux_vol() { delete next; }
void update_half() { cur_flux_half = flux_wrongE();
if (next) next->update_half(); }
void update() { cur_flux = (flux_wrongE() + cur_flux_half) * 0.5;
if (next) next->update(); }
double flux() { return cur_flux; }
flux_vol *next;
private:
double flux_wrongE() { return f->flux_in_box_wrongH(d, where); }
fields *f;
direction d;
volume where;
double cur_flux, cur_flux_half;
};
class grace_point;
enum grace_type { XY, ERROR_BARS };
class grace {
public:
grace(const char *fname, const char *dirname = ".");
~grace();
void new_set(grace_type t = XY);
void new_curve();
void set_legend(const char *);
void set_range(double xmin, double xmax, double ymin, double ymax);
void output_point(double x, double y,
double dy = -1.0, double extra = -1.0);
void output_out_of_order(int n, double x, double y,
double dy = -1.0, double extra= -1.0);
private:
void flush_pts();
FILE *f;
char *fn, *dn;
grace_point *pts;
int set_num,sn;
};
// The following is a utility function to parse the executable name use it
// to come up with a directory name, avoiding overwriting any existing
// directory, unless the source file hasn't changed.
const char *make_output_directory(const char *exename, const char *jobname = NULL);
void trash_output_directory(const char *dirname);
FILE *create_output_file(const char *dirname, const char *fname);
// The following allows you to hit ctrl-C to tell your calculation to stop
// and clean up.
void deal_with_ctrl_c(int stop_now = 2);
// When a ctrl_c is called, the following variable (which starts with a
// zero value) is incremented.
extern int interrupt;
int do_harminv(complex<double> *data, int n, double dt,
double fmin, double fmax, int maxbands,
complex<double> *amps, double *freq_re, double *freq_im,
double *errors = NULL,
double spectral_density = 1.1, double Q_thresh = 50,
double rel_err_thresh = 1e20, double err_thresh = 0.01,
double rel_amp_thresh = -1, double amp_thresh = -1);
complex<double> *make_casimir_gfunc(double T, double dt, double sigma, field_type ft,
complex<double> (*eps_func)(complex<double> omega) = 0,
double Tfft = 0);
complex<double> *make_casimir_gfunc_kz(double T, double dt, double sigma, field_type ft);
#if MEEP_SINGLE
// in mympi.cpp ... must be here in order to use realnum type
void broadcast(int from, realnum *data, int size);
#endif
} /* namespace meep */
#endif /* MEEP_H */
|