This file is indexed.

/usr/include/meep/vec.hpp is in libmeep-lam4-dev 1.1.1-10.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
// -*- C++ -*-
/* Copyright (C) 2005-2009 Massachusetts Institute of Technology
%
%  This program is free software; you can redistribute it and/or modify
%  it under the terms of the GNU General Public License as published by
%  the Free Software Foundation; either version 2, or (at your option)
%  any later version.
%
%  This program is distributed in the hope that it will be useful,
%  but WITHOUT ANY WARRANTY; without even the implied warranty of
%  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
%  GNU General Public License for more details.
%
%  You should have received a copy of the GNU General Public License
%  along with this program; if not, write to the Free Software Foundation,
%  Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/

#ifndef MEEP_VEC_H
#define MEEP_VEC_H

#include <complex>

using namespace std;

namespace meep {

const int NUM_FIELD_COMPONENTS = 20;
const int NUM_FIELD_TYPES = 6;

enum component { Ex=0, Ey, Er, Ep, Ez, Hx, Hy, Hr, Hp, Hz,
                 Dx, Dy, Dr, Dp, Dz, Bx, By, Br, Bp, Bz, Dielectric, Permeability };
#define Centered Dielectric // better name for centered "dielectric" grid
enum derived_component { Sx=100, Sy, Sr, Sp, Sz, EnergyDensity,
			 D_EnergyDensity, H_EnergyDensity };
enum ndim { D1=0, D2, D3, Dcyl };
enum field_type { E_stuff=0, H_stuff=1, D_stuff=2, B_stuff=3, PE_stuff=4, PH_stuff=5 };
enum boundary_side { High=0, Low };
enum direction { X=0,Y,Z,R,P, NO_DIRECTION };
struct signed_direction {
  signed_direction(direction dd=X,bool f=false, complex<double> ph=1.0) {
    d = dd; flipped = f; phase = ph;
  };
  signed_direction(const signed_direction &sd) {
    d = sd.d; flipped = sd.flipped; phase = sd.phase;
  }
  signed_direction operator*(complex<double> ph);
  bool operator==(const signed_direction &sd) const { return (d == sd.d &&
						       flipped == sd.flipped
						       && phase == sd.phase); }
  bool operator!=(const signed_direction &sd) const { return !(*this == sd); }
  direction d;
  bool flipped;
  complex<double> phase;
};

inline int number_of_directions(ndim dim) {
  return (int) (dim + 1 - 2 * (dim == Dcyl));
}

inline direction start_at_direction(ndim dim) {
  return (direction) (((dim == D1) || (dim == Dcyl)) ? 2 : 0);
}

inline direction stop_at_direction(ndim dim) {
  return (direction) (dim + 1 + 2 * (dim == D1));
}

component first_field_component(field_type ft);

#define FOR_FIELD_TYPES(ft) for (field_type ft = E_stuff; \
                                 ft <= PH_stuff; ft = (field_type) (ft+1))
#define FOR_ELECTRIC_COMPONENTS(c) for (component c = Ex; \
                                        c < Hx; c = (component) (c+1))
#define FOR_MAGNETIC_COMPONENTS(c) for (component c = Hz; \
                                        c > Ez; c = (component) (c-1))
#define FOR_B_COMPONENTS(c) for (component c = Bz; \
				 c > Dz; c = (component) (c-1))
#define FOR_H_AND_B(h,b) for (component h=Hx, b=Bx; \
			      h <= Hz; h = (component) (h+1), b = (component) (b+1))
#define FOR_D_COMPONENTS(c) for (component c = Dz; \
                                 c > Hz; c = (component) (c-1))
#define FOR_E_AND_D(e,d) for (component e = Ex, d = Dx; \
                              e <= Ez; e = (component) (e+1), d = (component) (d+1))
#define FOR_E_AND_H(c) for (component c = Ex; c < Dx; c = (component) (c+1))
#define FOR_D_AND_B(c) for (component c = Dx; c < Dielectric; c = (component) (c+1))
#define FOR_FT_COMPONENTS(ft,c) for (component c = first_field_component(ft), loop_cstop = component(first_field_component(ft) + 5); c < loop_cstop; c = component(c+1))
#define FOR_COMPONENTS(c) for (component c = Ex,loop_stop_co=Ey; \
                               c != loop_stop_co; \
                               c = (component)((c+1)%NUM_FIELD_COMPONENTS), \
                               loop_stop_co = Ex)
#define FOR_DIRECTIONS(d) for (direction d = X,loop_stop_di=Y; \
                               d != loop_stop_di; \
                               d = (direction)((d+1)%5), \
                               loop_stop_di = X)
#define FOR_SIDES(s) for (boundary_side s = High, loop_stop_bi=Low; \
			  s != loop_stop_bi; \
			  s = (boundary_side) ((s+1) % 2), \
			  loop_stop_bi = High)

// only loop over directions where we have coordinates
#define LOOP_OVER_DIRECTIONS(dim, d) for (meep::direction d = meep::start_at_direction(dim), \
                                     loop_stop_directi = meep::stop_at_direction(dim); \
                                     d < loop_stop_directi; d = (meep::direction) (d+1))

// loop over all directions in which we might have fields
#define LOOP_OVER_FIELD_DIRECTIONS(dim, d) for (direction d = dim == Dcyl ? Z : X; d < (dim == Dcyl ? NO_DIRECTION : R); d = direction(d+1))

// loop over indices idx from is to ie (inclusive) in gv
#define LOOP_OVER_IVECS(gv, is, ie, idx) \
  for (int loop_is1 = (is).yucky_val(0), \
           loop_is2 = (is).yucky_val(1), \
           loop_is3 = (is).yucky_val(2), \
           loop_n1 = ((ie).yucky_val(0) - loop_is1) / 2 + 1, \
           loop_n2 = ((ie).yucky_val(1) - loop_is2) / 2 + 1, \
           loop_n3 = ((ie).yucky_val(2) - loop_is3) / 2 + 1, \
           loop_d1 = (gv).yucky_direction(0), \
           loop_d2 = (gv).yucky_direction(1), \
           loop_d3 = (gv).yucky_direction(2), \
           loop_s1 = (gv).stride((direction) loop_d1), \
           loop_s2 = (gv).stride((direction) loop_d2), \
           loop_s3 = (gv).stride((direction) loop_d3), \
           idx0 = (is - (gv).little_corner()).yucky_val(0) / 2 * loop_s1 \
                + (is - (gv).little_corner()).yucky_val(1) / 2 * loop_s2 \
                + (is - (gv).little_corner()).yucky_val(2) / 2 * loop_s3,\
           loop_i1 = 0; loop_i1 < loop_n1; loop_i1++) \
    for (int loop_i2 = 0; loop_i2 < loop_n2; loop_i2++) \
      for (int idx = idx0 + loop_i1*loop_s1 + loop_i2*loop_s2, \
           loop_i3 = 0; loop_i3 < loop_n3; loop_i3++, idx+=loop_s3)

#define LOOP_OVER_VOL(gv, c, idx) \
  LOOP_OVER_IVECS(gv, (gv).little_corner() + (gv).iyee_shift(c), (gv).big_corner() + (gv).iyee_shift(c), idx)

#define LOOP_OVER_VOL_OWNED(gv, c, idx) \
  LOOP_OVER_IVECS(gv, (gv).little_owned_corner(c), (gv).big_corner(), idx)

#define LOOP_OVER_VOL_OWNED0(gv, c, idx) \
  LOOP_OVER_IVECS(gv, (gv).little_owned_corner0(c), (gv).big_corner(), idx)

#define LOOP_OVER_VOL_NOTOWNED(gv, c, idx) \
 for (ivec loop_notowned_is((gv).dim,0), loop_notowned_ie((gv).dim,0); \
      loop_notowned_is == zero_ivec((gv).dim);) \
   for (int loop_ibound = 0; (gv).get_boundary_icorners(c, loop_ibound,     \
		  				       &loop_notowned_is,  \
						       &loop_notowned_ie); \
	loop_ibound++) \
     LOOP_OVER_IVECS(gv, loop_notowned_is, loop_notowned_ie, idx)

#define LOOPS_ARE_STRIDE1(gv) ((gv).stride((gv).yucky_direction(2)) == 1)

// The following work identically to the LOOP_* macros above,
// but assume that the inner loop is stride-1: LOOPS_ARE_STRIDE1(gv) *must*
// be true.  These are useful in allowing gcc to auto-vectorize the inner
// loop, since gcc's vectorizer requires the array stride to be known at
// compile time.  Note that stride-1 loops are the most common case in Meep.
// Note that we also specify _Pragma("ivdep"), which is a hint to
// compilers like icc (and hopefully gcc at some point) that the loop
// iterations don't have data dependencies.  This means that you
// should only use these macros where that is true!  (Basically,
// all of this is here to support performance hacks of step_generic.)

// loop over indices idx from is to ie (inclusive) in gv
#define S1LOOP_OVER_IVECS(gv, is, ie, idx) \
  for (int loop_is1 = (is).yucky_val(0), \
           loop_is2 = (is).yucky_val(1), \
           loop_is3 = (is).yucky_val(2), \
           loop_n1 = ((ie).yucky_val(0) - loop_is1) / 2 + 1, \
           loop_n2 = ((ie).yucky_val(1) - loop_is2) / 2 + 1, \
           loop_n3 = ((ie).yucky_val(2) - loop_is3) / 2 + 1, \
           loop_d1 = (gv).yucky_direction(0), \
           loop_d2 = (gv).yucky_direction(1), \
           loop_s1 = (gv).stride((direction) loop_d1), \
           loop_s2 = (gv).stride((direction) loop_d2), \
           loop_s3 = 1, \
           idx0 = (is - (gv).little_corner()).yucky_val(0) / 2 * loop_s1 \
                + (is - (gv).little_corner()).yucky_val(1) / 2 * loop_s2 \
                + (is - (gv).little_corner()).yucky_val(2) / 2 * loop_s3,\
           loop_i1 = 0; loop_i1 < loop_n1; loop_i1++) \
    for (int loop_i2 = 0; loop_i2 < loop_n2; loop_i2++) _Pragma("ivdep") \
      for (int idx = idx0 + loop_i1*loop_s1 + loop_i2*loop_s2, \
           loop_i3 = 0; loop_i3 < loop_n3; loop_i3++, idx++)

#define S1LOOP_OVER_VOL(gv, c, idx) \
  S1LOOP_OVER_IVECS(gv, (gv).little_corner() + (gv).iyee_shift(c), (gv).big_corner() + (gv).iyee_shift(c), idx)

#define S1LOOP_OVER_VOL_OWNED(gv, c, idx) \
  S1LOOP_OVER_IVECS(gv, (gv).little_owned_corner(c), (gv).big_corner(), idx)

#define S1LOOP_OVER_VOL_OWNED0(gv, c, idx) \
  S1LOOP_OVER_IVECS(gv, (gv).little_owned_corner0(c), (gv).big_corner(), idx)

#define S1LOOP_OVER_VOL_NOTOWNED(gv, c, idx) \
 for (ivec loop_notowned_is((gv).dim,0), loop_notowned_ie((gv).dim,0); \
      loop_notowned_is == zero_ivec((gv).dim);) \
   for (int loop_ibound = 0; (gv).get_boundary_icorners(c, loop_ibound,     \
		  				       &loop_notowned_is,  \
						       &loop_notowned_ie); \
	loop_ibound++) \
     S1LOOP_OVER_IVECS(gv, loop_notowned_is, loop_notowned_ie, idx)

#define IVEC_LOOP_AT_BOUNDARY 					\
 ((loop_s1 != 0 && (loop_i1 == 0 || loop_i1 == loop_n1-1)) ||	\
  (loop_s2 != 0 && (loop_i2 == 0 || loop_i2 == loop_n2-1)) ||	\
  (loop_s3 != 0 && (loop_i3 == 0 || loop_i3 == loop_n3-1)))

#define IVEC_LOOP_ILOC(gv, iloc) \
  ivec iloc((gv).dim); \
  iloc.set_direction(direction(loop_d1), loop_is1 + 2*loop_i1); \
  iloc.set_direction(direction(loop_d2), loop_is2 + 2*loop_i2); \
  iloc.set_direction(direction(loop_d3), loop_is3 + 2*loop_i3)

#define IVEC_LOOP_LOC(gv, loc) \
  vec loc((gv).dim); \
  loc.set_direction(direction(loop_d1), (0.5*loop_is1 + loop_i1) * (gv).inva); \
  loc.set_direction(direction(loop_d2), (0.5*loop_is2 + loop_i2) * (gv).inva); \
  loc.set_direction(direction(loop_d3), (0.5*loop_is3 + loop_i3) * (gv).inva)

// integration weight for using LOOP_OVER_IVECS with field::integrate
#define IVEC_LOOP_WEIGHT1x(s0, s1, e0, e1, i, n, dir) ((i > 1 && i < n - 2) ? 1.0 : (i == 0 ? (s0).in_direction(direction(dir)) : (i == 1 ? (s1).in_direction(direction(dir)) : i == n - 1 ? (e0).in_direction(direction(dir)) : (i == n - 2 ? (e1).in_direction(direction(dir)) : 1.0))))
#define IVEC_LOOP_WEIGHT1(s0, s1, e0, e1, k) IVEC_LOOP_WEIGHT1x(s0, s1, e0, e1, loop_i##k,loop_n##k,loop_d##k)
#define IVEC_LOOP_WEIGHT(s0, s1, e0, e1, dV) (IVEC_LOOP_WEIGHT1(s0, s1, e0, e1, 3) * (IVEC_LOOP_WEIGHT1(s0, s1, e0, e1, 2) * ((dV) * IVEC_LOOP_WEIGHT1(s0, s1, e0, e1, 1))))

inline signed_direction flip(signed_direction d) {
  signed_direction d2 = d;
  d2.flipped = !d.flipped;
  return d2;
}

inline bool has_direction(ndim dim, direction d) {
  LOOP_OVER_DIRECTIONS(dim, dd) if (dd == d) return true;
  return false;
}

inline bool has_field_direction(ndim dim, direction d) {
  LOOP_OVER_FIELD_DIRECTIONS(dim, dd) if (dd == d) return true;
  return false;
}

// true if d is polar while dim is cartesian, or vice versa 
inline bool coordinate_mismatch(ndim dim, direction d) {
  return (d != NO_DIRECTION &&
	  ((dim >= D1 && dim <= D3 && d != X && d != Y && d != Z) ||
	   (dim == Dcyl && d != R && d != P && d != Z)));
}

bool is_tm(component c);

extern void abort(const char *, ...); // mympi.cpp

inline bool is_electric(component c) { return c < Hx; }
inline bool is_magnetic(component c) { return c >= Hx && c < Dx; }
inline bool is_D(component c) { return c >= Dx && c < Bx; }
inline bool is_B(component c) { return c >= Bx && c < Dielectric; }
inline bool is_derived(int c) { return c >= Sx; }
inline bool is_poynting(derived_component c) { return c < EnergyDensity; }
inline bool is_energydensity(derived_component c) { return c>=EnergyDensity; }
inline field_type type(component c) {
  if (is_electric(c)) return E_stuff;
  else if (is_magnetic(c)) return H_stuff;
  else if (is_D(c)) return D_stuff;
  else if (is_B(c)) return B_stuff;
  abort("Invalid field in type.\n");
  return E_stuff; // This is never reached.
}
const char *component_name(component c);
const char *component_name(derived_component c);
const char *component_name(int c);
const char *direction_name(direction);
const char *dimension_name(ndim);

inline int component_index(component c) {
  switch (c) {    
  case Ex: case Hx: case Dx: case Bx: return 0;
  case Ey: case Hy: case Dy: case By: return 1;
  case Ez: case Hz: case Dz: case Bz: return 2;
  case Er: case Hr: case Dr: case Br: return 0;
  case Ep: case Hp: case Dp: case Bp: return 1;
  case Dielectric: return -1;
  case Permeability: return -1;
  }
  return -2; // This code is never reached...
}

direction component_direction(int c);
int direction_component(int c, direction d);
inline direction component_direction(component c) {
  switch (c) {    
  case Ex: case Hx: case Dx: case Bx: return X;
  case Ey: case Hy: case Dy: case By: return Y;
  case Ez: case Hz: case Dz: case Bz: return Z;
  case Er: case Hr: case Dr: case Br: return R;
  case Ep: case Hp: case Dp: case Bp: return P;
  case Dielectric: return NO_DIRECTION;
  case Permeability: return NO_DIRECTION;
  }
  return X; // This code is never reached...
}
inline direction component_direction(derived_component c) {
  switch (c) {
  case Sx: return X;
  case Sy: return Y;
  case Sz: return Z;
  case Sr: return R;
  case Sp: return P;
  case EnergyDensity: case D_EnergyDensity: case H_EnergyDensity:
    return NO_DIRECTION;
  }
  return X; // This code is never reached...
}
inline direction component_direction(int c) {
  if (is_derived(c))
    return component_direction(derived_component(c));
  else
    return component_direction(component(c));
}
inline component direction_component(component c, direction d) {
  component start_point;
  if (is_electric(c)) start_point = Ex;
  else if (is_magnetic(c)) start_point = Hx;
  else if (is_D(c)) start_point = Dx;
  else if (is_B(c)) start_point = Bx;
  else if (c == Dielectric && d == NO_DIRECTION) return Dielectric;
  else if (c == Permeability && d == NO_DIRECTION) return Permeability;
  else abort("unknown field component %d", c);
  switch (d) {
  case X: return start_point;
  case Y: return (component) (start_point + 1);
  case Z: return (component) (start_point + 4);
  case R: return (component) (start_point + 2);
  case P: return (component) (start_point + 3);
  case NO_DIRECTION: abort("vector %d component in NO_DIRECTION", c);
  }
  return Ex; // This is never reached.
}
inline derived_component direction_component(derived_component c, direction d) {
  derived_component start_point;
  if (is_poynting(c)) start_point = Sx;
  else if (is_energydensity(c) && d == NO_DIRECTION) return c;
  else abort("unknown field component %d", c);
  switch (d) {
  case X: return start_point;
  case Y: return (derived_component) (start_point + 1);
  case Z: return (derived_component) (start_point + 4);
  case R: return (derived_component) (start_point + 2);
  case P: return (derived_component) (start_point + 3);
  case NO_DIRECTION: abort("vector %d derived_component in NO_DIRECTION", c);
  }
  return Sx; // This is never reached.
}
inline int direction_component(int c, direction d) {
  if (is_derived(c))
    return int(direction_component(derived_component(c), d));
  else
    return int(direction_component(component(c), d));
}

inline component field_type_component(field_type ft, component c) {
  return direction_component(first_field_component(ft),
			     component_direction(c));
}

inline bool coordinate_mismatch(ndim dim, component c) {
  return coordinate_mismatch(dim, component_direction(c));
}
inline bool coordinate_mismatch(ndim dim, derived_component c) {
  return coordinate_mismatch(dim, component_direction(c));
}

// cyclically shift a direction d or a component c by shift
// assumes: shift >= -99, {d, component_direction(c)} != NO_DIRECTION,
//          and has_direction(dim, {d, component_direction(c)})
inline direction cycle_direction(ndim dim, direction d, int shift) {
  int start = dim == Dcyl ? 2 : 0;
  return direction((d - start + shift + 99) % 3 + start);
}
inline component cycle_component(ndim dim, component c, int shift) {
  return direction_component(c, cycle_direction(dim, component_direction(c), shift));
}

class vec;
vec veccyl(double rr, double zz);
vec zero_vec(ndim);

class vec {
 public:
  vec() {};
  vec(ndim di) { dim = di; };
  vec(ndim di, double val) { dim = di; t[0]=t[1]=t[2]=t[3]=t[4]=val; };
  vec(double zz) { dim = D1; t[Z] = zz; };
  vec(double xx, double yy) { dim = D2; t[X] = xx; t[Y] = yy; };
  vec(double xx, double yy, double zz) {
    dim = D3; t[X] = xx; t[Y] = yy; t[Z] = zz; };
  friend vec veccyl(double rr, double zz);
  ~vec() {};

  vec operator+(const vec &a) const {
    vec result = a;
    LOOP_OVER_DIRECTIONS(dim, d) result.t[d] += t[d];
    return result;
  };

  vec operator+=(const vec &a) {
    LOOP_OVER_DIRECTIONS(dim, d) t[d] += a.t[d];
    return *this;
  };

  vec operator-(const vec &a) const {
    vec result = a;
    LOOP_OVER_DIRECTIONS(dim, d) result.t[d] = t[d] - result.t[d];
    return result;
  };

  vec operator-(void) const {
    vec result(dim);
    LOOP_OVER_DIRECTIONS(dim, d) result.t[d] = -t[d];
    return result;
  };

  vec operator-=(const vec &a) {
    LOOP_OVER_DIRECTIONS(dim, d) t[d] -= a.t[d];
    return *this;
  };

  bool operator!=(const vec &a) const {
    LOOP_OVER_DIRECTIONS(dim, d) if (t[d] != a.t[d]) return true;
    return false;
  };

  bool operator==(const vec &a) const {
    LOOP_OVER_DIRECTIONS(dim, d) if (t[d] != a.t[d]) return false;
    return true;
  };

  vec round_float(void) const {
    vec result = *this;
    LOOP_OVER_DIRECTIONS(dim, d) result.t[d] = float(result.t[d]);
    return result;
  }

  vec operator*(double s) const {
    vec result = *this;
    LOOP_OVER_DIRECTIONS(dim, d) result.t[d] *= s;
    return result;
  };

  vec operator/(double s) const {
    vec result = *this;
    LOOP_OVER_DIRECTIONS(dim, d) result.t[d] *= (1.0/s);
    return result;
  };

  // I use & as a dot product.
  double operator&(const vec &a) const {
    double result = 0.0;
    LOOP_OVER_DIRECTIONS(dim, d) result += t[d] * a.t[d];
    return result;
  };
  ndim dim;

  double r() const { return t[R]; };
  double x() const { return t[X]; };
  double y() const { return t[Y]; };
  double z() const { return t[Z]; };
  double in_direction(direction d) const { return t[d]; };
  void set_direction(direction d, double val) { t[d] = val; };

  double project_to_boundary(direction, double boundary_loc);
  friend vec zero_vec(ndim);
  friend vec one_vec(ndim);
 private:
  double t[5];
};

inline double abs(const vec &pt) { return sqrt(pt & pt); }

inline vec zero_vec(ndim di) {
  vec pt(di); LOOP_OVER_DIRECTIONS(di, d) pt.set_direction(d, 0.0);
  return pt;
}

inline vec one_vec(ndim di) {
  vec pt(di); LOOP_OVER_DIRECTIONS(di, d) pt.set_direction(d, 1.0);
  return pt;
}

inline vec unit_vec(ndim di, direction d) {
  vec pt(zero_vec(di));
  pt.set_direction(d, 1.0);
  return pt;
}

inline vec clean_vec(const vec &pt, double val_unused = 0.0) {
  vec ptc(pt.dim, val_unused);
  LOOP_OVER_DIRECTIONS(pt.dim, d) ptc.set_direction(d, pt.in_direction(d));
  return ptc;
}

inline vec veccyl(double rr, double zz) {
  vec pt(Dcyl); pt.t[R] = rr; pt.t[Z] = zz; return pt;
}

class ivec;
ivec iveccyl(int xx, int yy);
ivec zero_ivec(ndim);
ivec one_ivec(ndim);

class ivec {
 public:
  ivec() { dim = D2; t[X] = t[Y] = 0; };
  ivec(ndim di) { dim = di; };
  ivec(ndim di, int val) { dim = di; t[0]=t[1]=t[2]=t[3]=t[4]=val; };
  ivec(int zz) { dim = D1; t[Z] = zz; };
  ivec(int xx, int yy) { dim = D2; t[X] = xx; t[Y] = yy; };
  ivec(int xx, int yy, int zz) {
    dim = D3; t[X] = xx; t[Y] = yy; t[Z] = zz; };
  friend ivec iveccyl(int xx, int yy);
  ~ivec() {};

  // Only an idiot (or a macro) would use a yucky function.  Don't be an
  // idiot.
  int yucky_val(int) const;

  ivec operator+(const ivec &a) const {
    ivec result = a;
    LOOP_OVER_DIRECTIONS(dim, d) result.t[d] += t[d];
    return result;
  };

  ivec operator+=(const ivec &a) {
    LOOP_OVER_DIRECTIONS(dim, d) t[d] += a.t[d];
    return *this;
  };

  ivec operator-(const ivec &a) const {
    ivec result = a;
    LOOP_OVER_DIRECTIONS(dim, d) result.t[d] = t[d] - result.t[d];
    return result;
  };

  ivec operator-(void) const {
    ivec result(dim);
    LOOP_OVER_DIRECTIONS(dim, d) result.t[d] = -t[d];
    return result;
  };

  ivec operator-=(const ivec &a) {
    LOOP_OVER_DIRECTIONS(dim, d) t[d] -= a.t[d];
    return *this;
  };

  bool operator!=(const ivec &a) const {
    LOOP_OVER_DIRECTIONS(dim, d) if (t[d] != a.t[d]) return true;
    return false;
  };

  bool operator==(const ivec &a) const {
    LOOP_OVER_DIRECTIONS(dim, d) if (t[d] != a.t[d]) return false;
    return true;
  };

  bool operator<=(const ivec &a) const {
    LOOP_OVER_DIRECTIONS(dim, d) if (t[d] > a.t[d]) return false;
    return true;
  };

  bool operator>=(const ivec &a) const {
    LOOP_OVER_DIRECTIONS(dim, d) if (t[d] < a.t[d]) return false;
    return true;
  };

  bool operator<(const ivec &a) const {
    LOOP_OVER_DIRECTIONS(dim, d) if (t[d] >= a.t[d]) return false;
    return true;
  };

  bool operator>(const ivec &a) const {
    LOOP_OVER_DIRECTIONS(dim, d) if (t[d] <= a.t[d]) return false;
    return true;
  };

  ivec operator*(int s) const {
    ivec result = *this;
    LOOP_OVER_DIRECTIONS(dim, d) result.t[d] *= s;
    return result;
  };

  vec operator*(double s) const {
    vec result(dim);
    LOOP_OVER_DIRECTIONS(dim, d) result.set_direction(d, t[d] * s);
    return result;
  };
  ndim dim;

  int r() const { return t[R]; };
  int x() const { return t[X]; };
  int y() const { return t[Y]; };
  int z() const { return t[Z]; };
  int in_direction(direction d) const { return t[d]; };
  void set_direction(direction d, int val) { t[d] = val; };

  ivec round_up_to_even(void) const { 
    ivec result(dim);
    LOOP_OVER_DIRECTIONS(dim, d) 
      result.t[d] = t[d] + (t[d] >= 0 ? t[d] : -t[d]) % 2; 
    return result;
  }

  friend ivec zero_ivec(ndim);
  friend ivec one_ivec(ndim);
 private:
  int t[5];
};

inline ivec zero_ivec(ndim di) {
  ivec pt; pt.dim = di; LOOP_OVER_DIRECTIONS(di, d) pt.set_direction(d, 0);
  return pt;
}

inline ivec one_ivec(ndim di) {
  ivec pt; pt.dim = di; LOOP_OVER_DIRECTIONS(di, d) pt.set_direction(d, 1);
  return pt;
}

inline ivec unit_ivec(ndim di, direction d) {
  ivec pt(zero_ivec(di));
  pt.set_direction(d, 1);
  return pt;
}

inline ivec iveccyl(int rr, int zz) {
  ivec pt(Dcyl); pt.t[R] = rr; pt.t[Z] = zz; return pt;
}

vec max(const vec &vec1, const vec &vec2);
vec min(const vec &vec1, const vec &vec2);
ivec max(const ivec &ivec1, const ivec &ivec2);
ivec min(const ivec &ivec1, const ivec &ivec2);
ivec max_to_all(const ivec &); // in mympi.cpp

class volume {
 public:
  ndim dim;
  volume(ndim di) { dim = di; min_corner.dim = di; max_corner.dim = di; };
  volume(const vec &vec1, const vec &vec2);
  volume(const vec &pt);
  void set_direction_min(direction d, double val) { min_corner.set_direction(d, val); };
  void set_direction_max(direction d, double val) { max_corner.set_direction(d, val); };
  double in_direction_min(direction d) const { return min_corner.in_direction(d); };
  double in_direction_max(direction d) const { return max_corner.in_direction(d); };
  double in_direction(direction d) const { return in_direction_max(d) - in_direction_min(d); }
  double computational_volume() const; 
  double integral_volume() const;
  double full_volume() const;
  vec center() const { return (min_corner + max_corner) * 0.5; }
  double diameter() const;
  bool contains(const vec &h) const;
  bool contains(const volume &a) const;
  volume intersect_with(const volume &a) const;
  volume operator&(const volume &a) const {
    return intersect_with(a);
  };
  volume operator|(const volume &a) const {
    return volume(min(min_corner, a.min_corner),
			    max(max_corner, a.max_corner));
  };
  volume operator+(const vec &a) const {
    return volume(min_corner + a, max_corner + a);
  }
  volume operator+=(const vec &a) {
    min_corner += a; max_corner += a;
    return *this;
  }
  volume operator-(const vec &a) const {
    return volume(min_corner - a, max_corner - a);
  }
  volume operator-=(const vec &a) {
    min_corner -= a; max_corner -= a;
    return *this;
  }
  bool operator==(const volume &a) const {
    return (min_corner == a.min_corner && max_corner == a.max_corner);
  }
  bool operator!=(const volume &a) const { return !(*this == a); };
  volume round_float(void) const {
    return volume(min_corner.round_float(),max_corner.round_float());
  }
  bool intersects(const volume &a) const;
  bool operator&&(const volume &a) const {
    return intersects(a);
  };
  vec get_min_corner() const { return min_corner; };
  vec get_max_corner() const { return max_corner; };
  direction normal_direction() const;
 private:
  vec min_corner, max_corner;
};

class grid_volume;
grid_volume volcyl(double rsize, double zsize, double a);
grid_volume volone(double zsize, double a);
grid_volume vol1d(double zsize, double a);
grid_volume voltwo(double xsize, double ysize, double a);
grid_volume vol2d(double xsize, double ysize, double a);
grid_volume vol3d(double xsize, double ysize, double zsize, double a);

class grid_volume {
 public:
  grid_volume() {};

  ndim dim;
  double a, inva /* = 1/a */;

  void print() const;
  int stride(direction d) const { return the_stride[d]; };
  int num_direction(direction d) const {
    return num[((int) d) % 3];
  };
  // Only an idiot (or a macro) would use a yucky function.  Don't be an
  // idiot.
  int yucky_num(int) const;
  direction yucky_direction(int) const;
  void set_num_direction(direction d, int value);
  int nr() const { return num_direction(R); }
  int nx() const { return num_direction(X); }
  int ny() const { return num_direction(Y); }
  int nz() const { return num_direction(Z); }

  bool has_field(component c) const {
    if (dim == D1) return c == Ex || c == Hy || c == Dx || c == By;
    return (dim == Dcyl)?component_direction(c)>Y:component_direction(c)<R;
  }
  int has_boundary(boundary_side,direction) const;

  vec dr() const;
  vec dx() const;
  vec dy() const;
  vec dz() const;

  int ntot() const { return the_ntot; }
  int nowned_min() const { int n = 1; LOOP_OVER_DIRECTIONS(dim,d) n *= num_direction(d); return n; }
  int nowned(component c) const;
  vec operator[](const ivec &p) const { return p*(0.5*inva); };
  int index(component, const ivec &) const;
  ivec round_vec(const vec &) const;
  void interpolate(component, const vec &, int indices[8], double weights[8]) const;
  void interpolate(component, const vec &, ivec locs[8], double weights[8]) const;

  volume dV(component c, int index) const;
  volume dV(const ivec &, double diameter = 1.0) const;
  bool intersect_with(const grid_volume &vol_in, grid_volume *intersection = NULL, grid_volume *others = NULL, int *num_others = NULL) const;
  double rmin() const;
  double rmax() const;
  double xmin() const;
  double xmax() const;
  double ymin() const;
  double ymax() const;
  double zmin() const;
  double zmax() const;
  vec center() const;
  ivec icenter() const;
  vec loc(component, int index) const;
  vec loc_at_resolution(int index, double res) const;
  int ntot_at_resolution(double res) const;
  ivec iloc(component, int index) const;

  int yee_index(component c) const {
    int idx = 0;
    LOOP_OVER_DIRECTIONS(dim,d)
      idx += (1-iyee_shift(c).in_direction(d))*stride(d);
    return idx;
  }
  vec yee_shift(component) const;
  component eps_component() const;
  void yee2cent_offsets(component c, int &offset1, int &offset2);

  double boundary_location(boundary_side, direction) const;
  ivec big_corner() const;
  ivec little_corner() const { return io; };
  vec corner(boundary_side b) const;

  bool contains(const vec &) const;
  bool contains(const ivec &) const;

  /* differs from little_owned_corner in that it doesn't count
     "ownership" of the r=0 origin for Dcyl, which is updated separately */
  ivec little_owned_corner0(component c) const {
    return ivec(little_corner() + one_ivec(dim)*2 - iyee_shift(c));
  }

  ivec little_owned_corner(component c) const;
  bool owns(const ivec &) const;
  volume surroundings() const;
  volume interior() const;

  bool get_boundary_icorners(component c, int ib, ivec *cs, ivec *ce) const;

  friend grid_volume volcyl(double rsize, double zsize, double a);
  friend grid_volume volone(double zsize, double a);
  friend grid_volume vol1d(double zsize, double a);
  friend grid_volume voltwo(double xsize, double ysize, double a);
  friend grid_volume vol2d(double xsize, double ysize, double a);
  friend grid_volume vol3d(double xsize, double ysize, double zsize, double a);

  grid_volume split(int num, int which) const;
  grid_volume split_by_effort(int num, int which, int Ngv = 0, const grid_volume *v = NULL, double *effort = NULL) const;
  grid_volume split_at_fraction(bool want_high, int numer) const;
  grid_volume halve(direction d) const;
  void pad_self(direction d);
  grid_volume pad(direction d) const;
  grid_volume pad() const {
       grid_volume gv(*this);
       LOOP_OVER_DIRECTIONS(dim,d)
	    gv.pad_self(d);
       return gv;
  }
  ivec iyee_shift(component c) const {
    ivec out = zero_ivec(dim);
    LOOP_OVER_DIRECTIONS(dim,d)
      if (c == Dielectric || c == Permeability || 
          ((is_electric(c) || is_D(c)) && d == component_direction(c)) ||
          ((is_magnetic(c) || is_B(c)) && d != component_direction(c)))
        out.set_direction(d,1);
    return out;
  }

  vec get_origin() const { return origin; }
  void set_origin(const vec &o);
  void set_origin(const ivec &o);
  void shift_origin(const vec &s) { set_origin(origin + s); }
  void shift_origin(const ivec &s) { set_origin(io + s); }
  void shift_origin(direction d, int s) {shift_origin(unit_ivec(dim, d) * s);}
  void set_origin(direction d, int o);
  void center_origin(void) { shift_origin(-icenter()); }
  double origin_in_direction(direction d) const{return origin.in_direction(d);}
  int iorigin_in_direction(direction d) const{return io.in_direction(d);}
  double origin_r() const { return origin.r(); }
  double origin_x() const { return origin.x(); }
  double origin_y() const { return origin.y(); }
  double origin_z() const { return origin.z(); }

 private:
  grid_volume(ndim d, double ta, int na, int nb, int nc);
  ivec io; // integer origin ... always change via set_origin etc.!
  vec origin; // cache of operator[](io), for performance
  void update_ntot();
  void set_strides();
  void num_changed() { update_ntot(); set_strides(); }
  int num[3];
  int the_stride[5];
  int the_ntot;
};

class volume_list;

class symmetry;
symmetry identity();
symmetry rotate4(direction,const grid_volume &);
symmetry rotate2(direction,const grid_volume &);
symmetry mirror(direction,const grid_volume &);
symmetry r_to_minus_r_symmetry(double m);

class symmetry {
 public:
  symmetry();
  symmetry(const symmetry &);
  ~symmetry();
  friend symmetry identity();
  friend symmetry rotate4(direction,const grid_volume &);
  friend symmetry rotate2(direction,const grid_volume &);
  friend symmetry mirror(direction,const grid_volume &);

  signed_direction transform(direction d, int n) const;
  ivec transform(const ivec &, int n) const;
  vec transform(const vec &, int n) const;
  ivec transform_unshifted(const ivec &, int n) const;
  volume transform(const volume &, int n) const;
  component transform(component, int n) const;
  complex<double> phase_shift(component, int n) const;
  derived_component transform(derived_component, int n) const;
  complex<double> phase_shift(derived_component, int n) const;
  int transform(int, int n) const;
  complex<double> phase_shift(int, int n) const;
  int multiplicity() const;
  bool is_primitive(const ivec &) const;

  volume_list *reduce(const volume_list *gl) const;

  symmetry operator+(const symmetry &) const;
  symmetry operator*(complex<double>) const;
  symmetry operator-(const symmetry &b) const { return *this + b * (-1.0); }
  symmetry operator-(void) const { return *this * (-1.0); }
  void operator=(const symmetry &);
  bool operator==(const symmetry &) const;
  bool operator!=(const symmetry &S) const { return !(*this == S); };
 private:
  signed_direction S[5];
  complex<double> ph;
  vec symmetry_point;
  ivec i_symmetry_point;
  int g; // g is the multiplicity of the symmetry.
  symmetry *next;
  friend symmetry r_to_minus_r_symmetry(double m);
};

class volume_list {
public:
  volume_list(const volume &v, int c, complex<double> weight = 1.0, volume_list *next = 0) : v(v), c(c), weight(weight), next(next) {}
  ~volume_list() { delete next; }
  
  volume v;
  int c; // component or derived component associated with v (e.g. for flux)
  complex<double> weight;
  volume_list *next;
};

} /* namespace meep */

#endif /* MEEP_VEC_H */