This file is indexed.

/usr/include/ns3.17/ns3/random-variable.h is in libns3-dev 3.17+dfsg-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
/* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
//
// Copyright (c) 2006 Georgia Tech Research Corporation
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License version 2 as
// published by the Free Software Foundation;
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
//
// Author: Rajib Bhattacharjea<raj.b@gatech.edu>
// Author: Hadi Arbabi<marbabi@cs.odu.edu>
//

#ifndef NS3_RANDOM_VARIABLE_H
#define NS3_RANDOM_VARIABLE_H

#include <vector>
#include <algorithm>
#include <stdint.h>
#include <istream>
#include <ostream>
#include "attribute.h"
#include "attribute-helper.h"
#include "rng-seed-manager.h"

/**
 * \ingroup core
 * \defgroup randomvariable Random Variable Distributions
 *
 */

namespace ns3 {

class RandomVariableBase;

/**
 * \brief The basic RNG for NS-3.
 * \ingroup randomvariable
 *
 * Note: The underlying random number generation method used
 * by NS-3 is the RngStream code by Pierre L'Ecuyer at
 * the University of Montreal.
 *
 * NS-3 has a rich set of  random number generators.
 * Class RandomVariable defines the base class functionalty
 * required for all random number generators.  By default, the underlying
 * generator is seeded all the time with the same seed value and run number
 * coming from the ns3::GlobalValue \ref GlobalValueRngSeed "RngSeed" and \ref GlobalValueRngRun "RngRun".
 */
class RandomVariable
{
public:
  RandomVariable ();
  RandomVariable (const RandomVariable&o);
  RandomVariable &operator = (const RandomVariable &o);
  ~RandomVariable ();

  /**
   * \brief Returns a random double from the underlying distribution
   * \return A floating point random value
   */
  double GetValue (void) const;

  /**
   * \brief Returns a random integer integer from the underlying distribution
   * \return  Integer cast of RandomVariable::GetValue
   */
  uint32_t GetInteger (void) const;

private:
  friend std::ostream & operator << (std::ostream &os, const RandomVariable &var);
  friend std::istream & operator >> (std::istream &os, RandomVariable &var);

  RandomVariableBase *m_variable;
protected:
  RandomVariable (const RandomVariableBase &variable);
  RandomVariableBase * Peek (void) const;
};

/**
 * \brief The uniform distribution RNG for NS-3.
 * \ingroup randomvariable
 *
 * This class supports the creation of objects that return random numbers
 * from a fixed uniform distribution.  It also supports the generation of
 * single random numbers from various uniform distributions.
 *
 * The low end of the range is always included and the high end
 * of the range is always excluded.
 * \code
 * UniformVariable x (0,10);
 * x.GetValue ();  //will always return numbers [0,10)
 * \endcode
 */
class UniformVariable : public RandomVariable
{
public:
  /**
   * Creates a uniform random number generator in the
   * range [0.0 .. 1.0).
   */
  UniformVariable ();

  /**
   * Creates a uniform random number generator with the specified range
   * \param s Low end of the range
   * \param l High end of the range
   */
  UniformVariable (double s, double l);

  /**
  * \brief call RandomVariable::GetValue
  * \return A floating point random value
  *
  * Note: we have to re-implement this method here because the method is
  * overloaded below for the two-argument variant and the c++ name resolution
  * rules don't work well with overloads split between parent and child
  * classes.
  */
  double GetValue (void) const;

  /**
  * \brief Returns a random double with the specified range
  * \param s Low end of the range
  * \param l High end of the range
  * \return A floating point random value
  */
  double GetValue (double s, double l);

  /**
   * \brief Returns a random unsigned integer from the interval [s,l] including both ends.
   * \param s Low end of the range
   * \param l High end of the range
   * \return A random unsigned integer value.
   */
  uint32_t GetInteger (uint32_t s, uint32_t l);
};

/**
 * \brief A random variable that returns a constant
 * \ingroup randomvariable
 *
 * Class ConstantVariable defines a random number generator that
 * returns the same value every sample.
 */
class ConstantVariable : public RandomVariable
{

public:
  /**
   * Construct a ConstantVariable RNG that returns zero every sample
   */
  ConstantVariable ();

  /**
   * Construct a ConstantVariable RNG that returns the specified value
   * every sample.
   * \param c Unchanging value for this RNG.
   */
  ConstantVariable (double c);

  /**
   * \brief Specify a new constant RNG for this generator.
   * \param c New constant value for this RNG.
   */
  void SetConstant (double c);

};

/**
 * \brief Return a sequential list of values
 * \ingroup randomvariable
 *
 * Class SequentialVariable defines a random number generator that
 * returns a sequential sequence.  The sequence monotonically
 * increases for a period, then wraps around to the low value
 * and begins monotonically increasing again.
 */
class SequentialVariable : public RandomVariable
{
public:
  /**
   * \brief Constructor for the SequentialVariable RNG.
   *
   * The four parameters define the sequence.  For example
   * SequentialVariable(0,5,1,2) creates a RNG that has the sequence
   * 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 0, 0 ...
   * \param f First value of the sequence.
   * \param l One more than the last value of the sequence.
   * \param i Increment between sequence values
   * \param c Number of times each member of the sequence is repeated
   */
  SequentialVariable (double f, double l, double i = 1, uint32_t c = 1);

  /**
   * \brief Constructor for the SequentialVariable RNG.
   *
   * Differs from the first only in that the increment parameter is a
   * random variable
   * \param f First value of the sequence.
   * \param l One more than the last value of the sequence.
   * \param i Reference to a RandomVariable for the sequence increment
   * \param c Number of times each member of the sequence is repeated
   */
  SequentialVariable (double f, double l, const RandomVariable& i, uint32_t c = 1);

};

/**
 * \brief Exponentially Distributed random var
 * \ingroup randomvariable
 *
 * This class supports the creation of objects that return random numbers
 * from a fixed exponential distribution.  It also supports the generation of
 * single random numbers from various exponential distributions.
 *
 * The probability density function of an exponential variable
 * is defined over the interval [0, +inf) as:
 * \f$ \alpha  e^{-\alpha x} \f$
 * where \f$ \alpha = \frac{1}{mean} \f$
 *
 * The bounded version is defined over the interval [0,b] as:
 * \f$ \alpha  e^{-\alpha x} \quad x \in [0,b] \f$.
 * Note that in this case the true mean is \f$ 1/\alpha - b/(e^{\alpha \, b}-1) \f$
 *
 * \code
 * ExponentialVariable x(3.14);
 * x.GetValue ();  //will always return with mean 3.14
 * \endcode
 *
 */
class ExponentialVariable : public RandomVariable
{
public:
  /**
   * Constructs an exponential random variable  with a mean
   * value of 1.0.
   */
  ExponentialVariable ();

  /**
   * \brief Constructs an exponential random variable with a specified mean
   * \param m Mean value for the random variable
   */
  explicit ExponentialVariable (double m);

  /**
   * \brief Constructs an exponential random variable with specified
   * mean and upper limit.
   *
   * Since exponential distributions can theoretically return unbounded values,
   * it is sometimes useful to specify a fixed upper limit.  Note however when
   * the upper limit is specified, the true mean of the distribution is
   * slightly smaller than the mean value specified: \f$ m - b/(e^{b/m}-1) \f$.
   * \param m Mean value of the random variable
   * \param b Upper bound on returned values
   */
  ExponentialVariable (double m, double b);

};

/**
 * \brief ParetoVariable distributed random var
 * \ingroup randomvariable
 *
 * This class supports the creation of objects that return random numbers
 * from a fixed pareto distribution.  It also supports the generation of
 * single random numbers from various pareto distributions.
 *
 * The probability density function is defined over the range [\f$x_m\f$,+inf) as:
 * \f$ k \frac{x_m^k}{x^{k+1}}\f$ where \f$x_m > 0\f$ is called the location
 * parameter and \f$ k > 0\f$ is called the pareto index or shape.
 *
 * The parameter \f$ x_m \f$ can be infered from the mean and the parameter \f$ k \f$
 * with the equation \f$ x_m = mean \frac{k-1}{k},  k > 1\f$.
 *
 * \code
 * ParetoVariable x (3.14);
 * x.GetValue ();  //will always return with mean 3.14
 * \endcode
 */
class ParetoVariable : public RandomVariable
{
public:
  /**
   * \brief Constructs a pareto random variable with a mean of 1 and a shape
   * parameter of 1.5
   */
  ParetoVariable ();

  /**
   * \brief Constructs a pareto random variable with specified mean and shape
   * parameter of 1.5
   *
   * \param m Mean value of the distribution
   */
  explicit ParetoVariable (double m);

  /**
   * \brief Constructs a pareto random variable with the specified mean
   * value and shape parameter. Beware, s must be strictly greater than 1.
   *
   * \param m Mean value of the distribution
   * \param s Shape parameter for the distribution
   */
  ParetoVariable (double m, double s);

  /**
   * \brief Constructs a pareto random variable with the specified mean
   * value, shape (alpha), and upper bound. Beware, s must be strictly greater than 1.
   *
   * Since pareto distributions can theoretically return unbounded values,
   * it is sometimes useful to specify a fixed upper limit.  Note however
   * when the upper limit is specified, the true mean of the distribution
   * is slightly smaller than the mean value specified.
   * \param m Mean value
   * \param s Shape parameter
   * \param b Upper limit on returned values
   */
  ParetoVariable (double m, double s, double b);

  /**
   * \brief Constructs a pareto random variable with the specified scale and shape
   * parameters.
   *
   * \param params the two parameters, respectively scale and shape, of the distribution
   */
  ParetoVariable (std::pair<double, double> params);

  /**
   * \brief Constructs a pareto random variable with the specified
   * scale, shape (alpha), and upper bound.
   *
   * Since pareto distributions can theoretically return unbounded values,
   * it is sometimes useful to specify a fixed upper limit.  Note however
   * when the upper limit is specified, the true mean of the distribution
   * is slightly smaller than the mean value specified.
   *
   * \param params the two parameters, respectively scale and shape, of the distribution
   * \param b Upper limit on returned values
   */
  ParetoVariable (std::pair<double, double> params, double b);

};

/**
 * \brief WeibullVariable distributed random var
 * \ingroup randomvariable
 *
 * This class supports the creation of objects that return random numbers
 * from a fixed weibull distribution.  It also supports the generation of
 * single random numbers from various weibull distributions.
 *
 * The probability density function is defined over the interval [0, +inf]
 * as: \f$ \frac{k}{\lambda}\left(\frac{x}{\lambda}\right)^{k-1}e^{-\left(\frac{x}{\lambda}\right)^k} \f$
 * where \f$ k > 0\f$ is the shape parameter and \f$ \lambda > 0\f$  is the scale parameter. The
 * specified mean is related to the scale and shape parameters by the following relation:
 * \f$ mean = \lambda\Gamma\left(1+\frac{1}{k}\right) \f$ where \f$ \Gamma \f$ is the Gamma function.
 */
class WeibullVariable : public RandomVariable
{
public:
  /**
   * Constructs a weibull random variable  with a mean
   * value of 1.0 and a shape (alpha) parameter of 1
   */
  WeibullVariable ();


  /**
   * Constructs a weibull random variable with the specified mean
   * value and a shape (alpha) parameter of 1.5.
   * \param m mean value of the distribution
   */
  WeibullVariable (double m);

  /**
   * Constructs a weibull random variable with the specified mean
   * value and a shape (alpha).
   * \param m Mean value for the distribution.
   * \param s Shape (alpha) parameter for the distribution.
   */
  WeibullVariable (double m, double s);

  /**
  * \brief Constructs a weibull random variable with the specified mean
  * \brief value, shape (alpha), and upper bound.
  * Since WeibullVariable distributions can theoretically return unbounded values,
  * it is sometimes usefull to specify a fixed upper limit.  Note however
  * that when the upper limit is specified, the true mean of the distribution
  * is slightly smaller than the mean value specified.
  * \param m Mean value for the distribution.
  * \param s Shape (alpha) parameter for the distribution.
  * \param b Upper limit on returned values
  */
  WeibullVariable (double m, double s, double b);

};

/**
 * \brief Class NormalVariable defines a random variable with a
 * normal (Gaussian) distribution.
 * \ingroup randomvariable
 *
 * This class supports the creation of objects that return random numbers
 * from a fixed normal distribution.  It also supports the generation of
 * single random numbers from various normal distributions.
 *
 * The density probability function is defined over the interval (-inf,+inf)
 * as: \f$ \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{s\sigma^2}}\f$
 * where \f$ mean = \mu \f$ and \f$ variance = \sigma^2 \f$
 *
 */
class NormalVariable : public RandomVariable
{
public:
  /**
   * Constructs an normal random variable  with a mean
   * value of 0 and variance of 1.
   */
  NormalVariable ();

  /**
   * \brief Construct a normal random variable with specified mean and variance.
   * \param m Mean value
   * \param v Variance
   */
  NormalVariable (double m, double v);

  /**
   * \brief Construct a normal random variable with specified mean and variance
   * \param m Mean value
   * \param v Variance
   * \param b Bound.  The NormalVariable is bounded symmetrically about the mean
   * [mean-bound,mean+bound]
   */
  NormalVariable (double m, double v, double b);
};

/**
 * \brief EmpiricalVariable distribution random var
 * \ingroup randomvariable
 *
 * Defines a random variable  that has a specified, empirical
 * distribution.  The distribution is specified by a
 * series of calls to the CDF member function, specifying a
 * value and the probability that the function value is less than
 * the specified value.  When values are requested,
 * a uniform random variable is used to select a probability,
 * and the return value is interpreted linearly between the
 * two appropriate points in the CDF.  The method is known
 * as inverse transform sampling:
 * (http://en.wikipedia.org/wiki/Inverse_transform_sampling).
 */
class EmpiricalVariable : public RandomVariable
{
public:
  /**
   * Constructor for the EmpiricalVariable random variables.
   */
  explicit EmpiricalVariable ();

  /**
   * \brief Specifies a point in the empirical distribution
   * \param v The function value for this point
   * \param c Probability that the function is less than or equal to v
   */
  void CDF (double v, double c);  // Value, prob <= Value
protected:
  EmpiricalVariable (const RandomVariableBase &variable);
};

/**
 * \brief Integer-based empirical distribution
 * \ingroup randomvariable
 *
 * Defines an empirical distribution where all values are integers.
 * Indentical to EmpiricalVariable, except that the inverse transform
 * sampling interpolation described in the EmpiricalVariable documentation
 * is modified to only return integers.
 */
class IntEmpiricalVariable : public EmpiricalVariable
{
public:
  IntEmpiricalVariable ();
};

/**
 * \brief a non-random variable
 * \ingroup randomvariable
 *
 * Defines a random variable  that has a specified, predetermined
 * sequence.  This would be useful when trying to force
 * the RNG to return a known sequence, perhaps to
 * compare NS-3 to some other simulator
 */
class DeterministicVariable : public RandomVariable
{
public:
  /**
   * \brief Constructor
   *
   * Creates a generator that returns successive elements of the d array
   * on successive calls to RandomVariable::GetValue.  Note that the d pointer is copied
   * for use by the generator (shallow-copy), not its contents, so the
   * contents of the array d points to have to remain unchanged for the use
   * of DeterministicVariable to be meaningful.
   * \param d Pointer to array of random values to return in sequence
   * \param c Number of values in the array
   */
  explicit DeterministicVariable (double* d, uint32_t c);
};

/**
 * \brief Log-normal Distributed random var
 * \ingroup randomvariable
 *
 * LogNormalVariable defines a random variable with log-normal
 * distribution.  If one takes the natural logarithm of random
 * variable following the log-normal distribution, the obtained values
 * follow a normal distribution.
 *  This class supports the creation of objects that return random numbers
 * from a fixed lognormal distribution.  It also supports the generation of
 * single random numbers from various lognormal distributions.
 *
 * The probability density function is defined over the interval [0,+inf) as:
 * \f$ \frac{1}{x\sigma\sqrt{2\pi}} e^{-\frac{(ln(x) - \mu)^2}{2\sigma^2}}\f$
 * where \f$ mean = e^{\mu+\frac{\sigma^2}{2}} \f$ and
 * \f$ variance = (e^{\sigma^2}-1)e^{2\mu+\sigma^2}\f$
 *
 * The \f$ \mu \f$ and \f$ \sigma \f$ parameters can be calculated if instead
 * the mean and variance are known with the following equations:
 * \f$ \mu = ln(mean) - \frac{1}{2}ln\left(1+\frac{variance}{mean^2}\right)\f$, and,
 * \f$ \sigma = \sqrt{ln\left(1+\frac{variance}{mean^2}\right)}\f$
 */
class LogNormalVariable : public RandomVariable
{
public:
  /**
   * \param mu mu parameter of the lognormal distribution
   * \param sigma sigma parameter of the lognormal distribution
   */
  LogNormalVariable (double mu, double sigma);
};

/**
 * \brief Gamma Distributed Random Variable
 * \ingroup randomvariable
 *
 * GammaVariable defines a random variable with gamma distribution.
 *
 * This class supports the creation of objects that return random numbers
 * from a fixed gamma distribution. It also supports the generation of
 * single random numbers from various gamma distributions.
 *
 * The probability density function is defined over the interval [0,+inf) as:
 * \f$ x^{\alpha-1} \frac{e^{-\frac{x}{\beta}}}{\beta^\alpha \Gamma(\alpha)}\f$
 * where \f$ mean = \alpha\beta \f$ and
 * \f$ variance = \alpha \beta^2\f$
 */
class GammaVariable : public RandomVariable
{
public:
  /**
   * Constructs a gamma random variable with alpha = 1.0 and beta = 1.0
   */
  GammaVariable ();

  /**
   * \param alpha alpha parameter of the gamma distribution
   * \param beta beta parameter of the gamma distribution
   */
  GammaVariable (double alpha, double beta);

  /**
   * \brief call RandomVariable::GetValue
   * \return A floating point random value
   *
   * Note: we have to re-implement this method here because the method is
   * overloaded below for the two-argument variant and the c++ name resolution
   * rules don't work well with overloads split between parent and child
   * classes.
   */
  double GetValue (void) const;

  /**
   * \brief Returns a gamma random distributed double with parameters alpha and beta.
   * \param alpha alpha parameter of the gamma distribution
   * \param beta beta parameter of the gamma distribution
   * \return A floating point random value
   */
  double GetValue (double alpha, double beta) const;
};

/**
 * \brief Erlang Distributed Random Variable
 * \ingroup randomvariable
 *
 * ErlangVariable defines a random variable with Erlang distribution.
 *
 * The Erlang distribution is a special case of the Gamma distribution where k
 * (= alpha) is a non-negative integer. Erlang distributed variables can be
 * generated using a much faster algorithm than gamma variables.
 *
 * This class supports the creation of objects that return random numbers from
 * a fixed Erlang distribution. It also supports the generation of single
 * random numbers from various Erlang distributions.
 *
 * The probability density function is defined over the interval [0,+inf) as:
 * \f$ \frac{x^{k-1} e^{-\frac{x}{\lambda}}}{\lambda^k (k-1)!}\f$
 * where \f$ mean = k \lambda \f$ and
 * \f$ variance = k \lambda^2\f$
 */
class ErlangVariable : public RandomVariable
{
public:
  /**
   * Constructs an Erlang random variable with k = 1 and lambda = 1.0
   */
  ErlangVariable ();

  /**
   * \param k k parameter of the Erlang distribution. Must be a non-negative integer.
   * \param lambda lambda parameter of the Erlang distribution
   */
  ErlangVariable (unsigned int k, double lambda);

  /**
   * \brief call RandomVariable::GetValue
   * \return A floating point random value
   *
   * Note: we have to re-implement this method here because the method is
   * overloaded below for the two-argument variant and the c++ name resolution
   * rules don't work well with overloads split between parent and child
   * classes.
   */
  double GetValue (void) const;

  /**
   * \brief Returns an Erlang random distributed double with parameters k and lambda.
   * \param k k parameter of the Erlang distribution. Must be a non-negative integer.
   * \param lambda lambda parameter of the Erlang distribution
   * \return A floating point random value
   */
  double GetValue (unsigned int k, double lambda) const;
};

/**
 * \brief Zipf Distributed Random Variable
 * \ingroup randomvariable
 *
 * ZipfVariable defines a discrete random variable with Zipf distribution.
 *
 * The Zipf's law states that given some corpus of natural language
 * utterances, the frequency of any word is inversely proportional
 * to its rank in the frequency table.
 *
 * Zipf's distribution have two parameters, alpha and N, where:
 * \f$ \alpha > 0 \f$ (real) and \f$ N \in \{1,2,3 \dots\}\f$ (integer).
 * Probability Mass Function is \f$ f(k; \alpha, N) = k^{-\alpha}/ H_{N,\alpha} \f$
 * where \f$ H_{N,\alpha} = \sum_{n=1}^N n^{-\alpha} \f$
 */
class ZipfVariable : public RandomVariable
{
public:
  /**
   * \brief Returns a Zipf random variable with parameters N and alpha.
   * \param N the number of possible items. Must be a positive integer.
   * \param alpha the alpha parameter. Must be a strictly positive real.
   */
  ZipfVariable (long N, double alpha);
  /**
   * Constructs a Zipf random variable with N=1 and alpha=0.
   */
  ZipfVariable ();
};

/**
 * \brief Zeta Distributed Distributed Random Variable
 * \ingroup randomvariable
 *
 * ZetaVariable defines a discrete random variable with Zeta distribution.
 *
 * The Zeta distribution is closely related to Zipf distribution when N goes to infinity.
 *
 * Zeta distribution has one parameter, alpha, \f$ \alpha > 1 \f$ (real).
 * Probability Mass Function is \f$ f(k; \alpha) = k^{-\alpha}/\zeta(\alpha) \f$
 * where \f$ \zeta(\alpha) \f$ is the Riemann zeta function ( \f$ \sum_{n=1}^\infty n^{-\alpha} ) \f$
 */
class ZetaVariable : public RandomVariable
{
public:
  /**
   * \brief Returns a Zeta random variable with parameter alpha.
   * \param alpha the alpha parameter. Must be a strictly greater than 1, real.
   */
  ZetaVariable (double alpha);
  /**
   * Constructs a Zeta random variable with alpha=3.14
   */
  ZetaVariable ();
};

/**
 * \brief Triangularly Distributed random var
 * \ingroup randomvariable
 *
 * This distribution is a triangular distribution.  The probability density
 * is in the shape of a triangle.
 */
class TriangularVariable : public RandomVariable
{
public:
  /**
   * Creates a triangle distribution random number generator in the
   * range [0.0 .. 1.0), with mean of 0.5
   */
  TriangularVariable ();

  /**
   * Creates a triangle distribution random number generator with the specified
   * range
   * \param s Low end of the range
   * \param l High end of the range
   * \param mean mean of the distribution
   */
  TriangularVariable (double s, double l, double mean);

};

std::ostream & operator << (std::ostream &os, const RandomVariable &var);
std::istream & operator >> (std::istream &os, RandomVariable &var);

/**
 * \class ns3::RandomVariableValue
 * \brief hold objects of type ns3::RandomVariable
 */

ATTRIBUTE_VALUE_DEFINE (RandomVariable);
ATTRIBUTE_CHECKER_DEFINE (RandomVariable);
ATTRIBUTE_ACCESSOR_DEFINE (RandomVariable);

} // namespace ns3

#endif /* NS3_RANDOM_VARIABLE_H */