/usr/lib/ocaml/ocamlgraph/sig.mli is in libocamlgraph-ocaml-dev 1.8.3-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 | (**************************************************************************)
(* *)
(* Ocamlgraph: a generic graph library for OCaml *)
(* Copyright (C) 2004-2010 *)
(* Sylvain Conchon, Jean-Christophe Filliatre and Julien Signoles *)
(* *)
(* This software is free software; you can redistribute it and/or *)
(* modify it under the terms of the GNU Library General Public *)
(* License version 2.1, with the special exception on linking *)
(* described in file LICENSE. *)
(* *)
(* This software is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. *)
(* *)
(**************************************************************************)
(** {b Signatures for graph implementations.} *)
(** {2 Signatures for graph implementations} *)
(** Signature for vertices. *)
module type VERTEX = sig
(** Vertices are {!COMPARABLE}. *)
type t
val compare : t -> t -> int
val hash : t -> int
val equal : t -> t -> bool
(** Vertices are labeled. *)
type label
val create : label -> t
val label : t -> label
end
(** Signature for edges. *)
module type EDGE = sig
(** Edges are {!ORDERED_TYPE}. *)
type t
val compare : t -> t -> int
(** Edges are directed. *)
type vertex
val src : t -> vertex
(** Edge origin. *)
val dst : t -> vertex
(** Edge destination. *)
(** Edges are labeled. *)
type label
val create : vertex -> label -> vertex -> t
(** [create v1 l v2] creates an edge from [v1] to [v2] with label [l] *)
val label : t -> label
(** Get the label of an edge. *)
end
(** Common signature for all graphs. *)
module type G = sig
(** {2 Graph structure} *)
(** Abstract type of graphs *)
type t
(** Vertices have type [V.t] and are labeled with type [V.label]
(note that an implementation may identify the vertex with its
label) *)
module V : VERTEX
type vertex = V.t
(** Edges have type [E.t] and are labeled with type [E.label].
[src] (resp. [dst]) returns the origin (resp. the destination) of a
given edge. *)
module E : EDGE with type vertex = vertex
type edge = E.t
(** Is this an implementation of directed graphs? *)
val is_directed : bool
(** {2 Size functions} *)
val is_empty : t -> bool
val nb_vertex : t -> int
val nb_edges : t -> int
(** Degree of a vertex *)
val out_degree : t -> vertex -> int
(** [out_degree g v] returns the out-degree of [v] in [g].
@raise Invalid_argument if [v] is not in [g]. *)
val in_degree : t -> vertex -> int
(** [in_degree g v] returns the in-degree of [v] in [g].
@raise Invalid_argument if [v] is not in [g]. *)
(** {2 Membership functions} *)
val mem_vertex : t -> vertex -> bool
val mem_edge : t -> vertex -> vertex -> bool
val mem_edge_e : t -> edge -> bool
val find_edge : t -> vertex -> vertex -> edge
(** [find_edge g v1 v2] returns the edge from [v1] to [v2] if it exists.
Unspecified behaviour if [g] has several edges from [v1] to [v2].
@raise Not_found if no such edge exists. *)
val find_all_edges : t -> vertex -> vertex -> edge list
(** [find_all_edges g v1 v2] returns all the edges from [v1] to [v2].
@since ocamlgraph 1.8 *)
(** {2 Successors and predecessors}
You should better use iterators on successors/predecessors (see
Section "Vertex iterators"). *)
val succ : t -> vertex -> vertex list
(** [succ g v] returns the successors of [v] in [g].
@raise Invalid_argument if [v] is not in [g]. *)
val pred : t -> vertex -> vertex list
(** [pred g v] returns the predecessors of [v] in [g].
@raise Invalid_argument if [v] is not in [g]. *)
(** Labeled edges going from/to a vertex *)
val succ_e : t -> vertex -> edge list
(** [succ_e g v] returns the edges going from [v] in [g].
@raise Invalid_argument if [v] is not in [g]. *)
val pred_e : t -> vertex -> edge list
(** [pred_e g v] returns the edges going to [v] in [g].
@raise Invalid_argument if [v] is not in [g]. *)
(** {2 Graph iterators} *)
val iter_vertex : (vertex -> unit) -> t -> unit
(** Iter on all vertices of a graph. *)
val fold_vertex : (vertex -> 'a -> 'a) -> t -> 'a -> 'a
(** Fold on all vertices of a graph. *)
val iter_edges : (vertex -> vertex -> unit) -> t -> unit
(** Iter on all edges of a graph. Edge label is ignored. *)
val fold_edges : (vertex -> vertex -> 'a -> 'a) -> t -> 'a -> 'a
(** Fold on all edges of a graph. Edge label is ignored. *)
val iter_edges_e : (edge -> unit) -> t -> unit
(** Iter on all edges of a graph. *)
val fold_edges_e : (edge -> 'a -> 'a) -> t -> 'a -> 'a
(** Fold on all edges of a graph. *)
val map_vertex : (vertex -> vertex) -> t -> t
(** Map on all vertices of a graph. *)
(** {2 Vertex iterators}
Each iterator [iterator f v g] iters [f] to the successors/predecessors
of [v] in the graph [g] and raises [Invalid_argument] if [v] is not in
[g]. It is the same for functions [fold_*] which use an additional
accumulator.
<b>Time complexity for ocamlgraph implementations:</b>
operations on successors are in O(1) amortized for imperative graphs and
in O(ln(|V|)) for persistent graphs while operations on predecessors are
in O(max(|V|,|E|)) for imperative graphs and in O(max(|V|,|E|)*ln|V|) for
persistent graphs. *)
(** iter/fold on all successors/predecessors of a vertex. *)
val iter_succ : (vertex -> unit) -> t -> vertex -> unit
val iter_pred : (vertex -> unit) -> t -> vertex -> unit
val fold_succ : (vertex -> 'a -> 'a) -> t -> vertex -> 'a -> 'a
val fold_pred : (vertex -> 'a -> 'a) -> t -> vertex -> 'a -> 'a
(** iter/fold on all edges going from/to a vertex. *)
val iter_succ_e : (edge -> unit) -> t -> vertex -> unit
val fold_succ_e : (edge -> 'a -> 'a) -> t -> vertex -> 'a -> 'a
val iter_pred_e : (edge -> unit) -> t -> vertex -> unit
val fold_pred_e : (edge -> 'a -> 'a) -> t -> vertex -> 'a -> 'a
end
(** Signature for persistent (i.e. immutable) graph. *)
module type P = sig
include G
(** A persistent graph is a graph. *)
val empty : t
(** The empty graph. *)
val add_vertex : t -> vertex -> t
(** [add_vertex g v] adds the vertex [v] to the graph [g].
Just return [g] if [v] is already in [g]. *)
val remove_vertex : t -> vertex -> t
(** [remove g v] removes the vertex [v] from the graph [g]
(and all the edges going from [v] in [g]).
Just return [g] if [v] is not in [g].
<b>Time complexity for ocamlgraph implementations:</b>
O(|V|*ln(|V|)) for unlabeled graphs and
O(|V|*max(ln(|V|),D)) for labeled graphs.
D is the maximal degree of the graph. *)
val add_edge : t -> vertex -> vertex -> t
(** [add_edge g v1 v2] adds an edge from the vertex [v1] to the vertex [v2]
in the graph [g].
Add also [v1] (resp. [v2]) in [g] if [v1] (resp. [v2]) is not in [g].
Just return [g] if this edge is already in [g]. *)
val add_edge_e : t -> edge -> t
(** [add_edge_e g e] adds the edge [e] in the graph [g].
Add also [E.src e] (resp. [E.dst e]) in [g] if [E.src e] (resp. [E.dst
e]) is not in [g].
Just return [g] if [e] is already in [g]. *)
val remove_edge : t -> vertex -> vertex -> t
(** [remove_edge g v1 v2] removes the edge going from [v1] to [v2] from the
graph [g]. If the graph is labelled, all the edges going from [v1] to
[v2] are removed from [g].
Just return [g] if this edge is not in [g].
@raise Invalid_argument if [v1] or [v2] are not in [g]. *)
val remove_edge_e : t -> edge -> t
(** [remove_edge_e g e] removes the edge [e] from the graph [g].
Just return [g] if [e] is not in [g].
@raise Invalid_argument if [E.src e] or [E.dst e] are not in [g]. *)
end
(** Signature for imperative (i.e. mutable) graphs. *)
module type I = sig
include G
(** An imperative graph is a graph. *)
val create : ?size:int -> unit -> t
(** [create ()] returns an empty graph. Optionally, a size can be
given, which should be on the order of the expected number of
vertices that will be in the graph (for hash tables-based
implementations). The graph grows as needed, so [size] is
just an initial guess. *)
val clear: t -> unit
(** Remove all vertices and edges from the given graph.
@since ocamlgraph 1.4 *)
val copy : t -> t
(** [copy g] returns a copy of [g]. Vertices and edges (and eventually
marks, see module [Mark]) are duplicated. *)
val add_vertex : t -> vertex -> unit
(** [add_vertex g v] adds the vertex [v] to the graph [g].
Do nothing if [v] is already in [g]. *)
val remove_vertex : t -> vertex -> unit
(** [remove g v] removes the vertex [v] from the graph [g]
(and all the edges going from [v] in [g]).
Do nothing if [v] is not in [g].
<b>Time complexity for ocamlgraph implementations:</b>
O(|V|*ln(D)) for unlabeled graphs and O(|V|*D) for
labeled graphs. D is the maximal degree of the graph. *)
val add_edge : t -> vertex -> vertex -> unit
(** [add_edge g v1 v2] adds an edge from the vertex [v1] to the vertex [v2]
in the graph [g].
Add also [v1] (resp. [v2]) in [g] if [v1] (resp. [v2]) is not in [g].
Do nothing if this edge is already in [g]. *)
val add_edge_e : t -> edge -> unit
(** [add_edge_e g e] adds the edge [e] in the graph [g].
Add also [E.src e] (resp. [E.dst e]) in [g] if [E.src e] (resp. [E.dst
e]) is not in [g].
Do nothing if [e] is already in [g]. *)
val remove_edge : t -> vertex -> vertex -> unit
(** [remove_edge g v1 v2] removes the edge going from [v1] to [v2] from the
graph [g]. If the graph is labelled, all the edges going from [v1] to
[v2] are removed from [g].
Do nothing if this edge is not in [g].
@raise Invalid_argument if [v1] or [v2] are not in [g]. *)
val remove_edge_e : t -> edge -> unit
(** [remove_edge_e g e] removes the edge [e] from the graph [g].
Do nothing if [e] is not in [g].
@raise Invalid_argument if [E.src e] or [E.dst e] are not in [g]. *)
end
(** Signature for marks on vertices. *)
module type MARK = sig
type graph
(** Type of graphs. *)
type vertex
(** Type of graph vertices. *)
val clear : graph -> unit
(** [clear g] sets all the marks to 0 for all the vertices of [g]. *)
val get : vertex -> int
(** Mark value (in O(1)). *)
val set : vertex -> int -> unit
(** Set the mark of the given vertex. *)
end
(** Signature for imperative graphs with marks on vertices. *)
module type IM = sig
include I
(** An imperative graph with marks is an imperative graph. *)
(** Mark on vertices.
Marks can be used if you want to store some information on vertices:
it is more efficient to use marks than an external table. *)
module Mark : MARK with type graph = t and type vertex = vertex
end
(** {2 Signature for ordered and hashable types} *)
(** Signature with only an abstract type. *)
module type ANY_TYPE = sig type t end
(** Signature equivalent to [Set.OrderedType]. *)
module type ORDERED_TYPE = sig type t val compare : t -> t -> int end
(** Signature equivalent to [Set.OrderedType] with a default value. *)
module type ORDERED_TYPE_DFT = sig include ORDERED_TYPE val default : t end
(** Signature equivalent to [Hashtbl.HashedType]. *)
module type HASHABLE = sig
type t
val hash : t -> int
val equal : t -> t -> bool
end
(** Signature merging {!ORDERED_TYPE} and {!HASHABLE}. *)
module type COMPARABLE = sig
type t
val compare : t -> t -> int
val hash : t -> int
val equal : t -> t -> bool
end
(*
Local Variables:
compile-command: "make -C .."
End:
*)
|