/usr/lib/ocaml/ocamlgraph/strat.mli is in libocamlgraph-ocaml-dev 1.8.3-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 | (**************************************************************************)
(* *)
(* Ocamlgraph: a generic graph library for OCaml *)
(* Copyright (C) 2004-2010 *)
(* Sylvain Conchon, Jean-Christophe Filliatre and Julien Signoles *)
(* *)
(* This software is free software; you can redistribute it and/or *)
(* modify it under the terms of the GNU Library General Public *)
(* License version 2.1, with the special exception on linking *)
(* described in file LICENSE. *)
(* *)
(* This software is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. *)
(* *)
(**************************************************************************)
(** Strategies
Implementation of a winning strategy of a graph: the graph
represents a two players game, each vertex belongs to either player
(whose turn it is to play) and describes a configuration of the
game. The algorithm computes the winning strategy of a player, if any;
i.e. the moves to play (which vertex to go to) so that for all
possible moves of the other player, the game goes through a final
state.
@author Nicolas Ayache *)
(** Signature for graphs *)
module type G = sig
type t
module V : Sig.ORDERED_TYPE
type vertex = V.t
val mem_vertex : t -> vertex -> bool
val succ : t -> vertex -> vertex list
val fold_vertex : (vertex -> 'a -> 'a) -> t -> 'a -> 'a
val fold_succ : (vertex -> 'a -> 'a) -> t -> vertex -> 'a -> 'a
end
(** Signature for graph add-ons: an initial vertex, final vertices
and membership of vertices to either true or false,
i.e. first or second player *)
module type PLAYER = sig
type t
type vertex
val get_initial : t -> vertex
val is_final : t -> vertex -> bool
val turn : t -> vertex -> bool
end
(** Signature for strategies: for a given state, the strategy tells
which state to go to *)
module type STRAT = sig
type t
type vertex
val empty : t
val add : t -> vertex -> vertex -> t
val next : t -> vertex -> vertex
(** @raise Invalid_argument if vertex's image is not defined *)
end
(** Implements strategy algorithms on graphs *)
module Algo
(G : G)
(P : PLAYER with type vertex = G.vertex)
(S : STRAT with type vertex = G.vertex) :
sig
(** [coherent_player g p] returns [true] iff
the completion [p] is coherent w.r.t.
the graph g *)
val coherent_player : G.t -> P.t -> bool
(** [coherent_strat g s] returns [true] iff
the strategy [s] is coherent w.r.t.
the graph [g] *)
val coherent_strat : G.t -> S.t -> bool
(** [game g p a b] returns [true] iff [a] wins in [g]
given the completion [p] (i.e. the game
goes through a final state). *)
val game : G.t -> P.t -> S.t -> S.t -> bool
(** [strategy g p s] returns [true] iff [s] wins in [g]
given the completion [p], whatever strategy
plays the other player. *)
val strategy : G.t -> P.t -> S.t -> bool
(** [strategyA g p] returns [true] iff there
exists [a] winning stragegy for the true
player. In this case, the winning
strategy is provided. *)
val strategyA : G.t -> P.t -> (bool * S.t)
end
|