/usr/include/oce/PLib.hxx is in liboce-foundation-dev 0.15-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 | // This file is generated by WOK (CPPExt).
// Please do not edit this file; modify original file instead.
// The copyright and license terms as defined for the original file apply to
// this header file considered to be the "object code" form of the original source.
#ifndef _PLib_HeaderFile
#define _PLib_HeaderFile
#ifndef _Standard_HeaderFile
#include <Standard.hxx>
#endif
#ifndef _Standard_DefineAlloc_HeaderFile
#include <Standard_DefineAlloc.hxx>
#endif
#ifndef _Standard_Macro_HeaderFile
#include <Standard_Macro.hxx>
#endif
#ifndef _Standard_Real_HeaderFile
#include <Standard_Real.hxx>
#endif
#ifndef _Standard_Integer_HeaderFile
#include <Standard_Integer.hxx>
#endif
#ifndef _Standard_Boolean_HeaderFile
#include <Standard_Boolean.hxx>
#endif
#ifndef _GeomAbs_Shape_HeaderFile
#include <GeomAbs_Shape.hxx>
#endif
class TColStd_Array1OfReal;
class TColStd_Array2OfReal;
class TColgp_Array1OfPnt;
class TColgp_Array1OfPnt2d;
class math_Matrix;
class TColgp_Array2OfPnt;
class PLib_Base;
class PLib_JacobiPolynomial;
class PLib_HermitJacobi;
class PLib_DoubleJacobiPolynomial;
//! PLib means Polynomial functions library. This pk <br>
//! provides basic computation functions for <br>
//! polynomial functions. <br>
//! <br>
class PLib {
public:
DEFINE_STANDARD_ALLOC
//! Used as argument for a non rational functions <br>
//! <br>
static TColStd_Array1OfReal& NoWeights() ;
//! Used as argument for a non rational functions <br>
//! <br>
static TColStd_Array2OfReal& NoWeights2() ;
//! Copy in FP the coordinates of the poles. <br>
Standard_EXPORT static void SetPoles(const TColgp_Array1OfPnt& Poles,TColStd_Array1OfReal& FP) ;
//! Copy in FP the coordinates of the poles. <br>
Standard_EXPORT static void SetPoles(const TColgp_Array1OfPnt& Poles,const TColStd_Array1OfReal& Weights,TColStd_Array1OfReal& FP) ;
//! Get from FP the coordinates of the poles. <br>
Standard_EXPORT static void GetPoles(const TColStd_Array1OfReal& FP,TColgp_Array1OfPnt& Poles) ;
//! Get from FP the coordinates of the poles. <br>
Standard_EXPORT static void GetPoles(const TColStd_Array1OfReal& FP,TColgp_Array1OfPnt& Poles,TColStd_Array1OfReal& Weights) ;
//! Copy in FP the coordinates of the poles. <br>
Standard_EXPORT static void SetPoles(const TColgp_Array1OfPnt2d& Poles,TColStd_Array1OfReal& FP) ;
//! Copy in FP the coordinates of the poles. <br>
Standard_EXPORT static void SetPoles(const TColgp_Array1OfPnt2d& Poles,const TColStd_Array1OfReal& Weights,TColStd_Array1OfReal& FP) ;
//! Get from FP the coordinates of the poles. <br>
Standard_EXPORT static void GetPoles(const TColStd_Array1OfReal& FP,TColgp_Array1OfPnt2d& Poles) ;
//! Get from FP the coordinates of the poles. <br>
Standard_EXPORT static void GetPoles(const TColStd_Array1OfReal& FP,TColgp_Array1OfPnt2d& Poles,TColStd_Array1OfReal& Weights) ;
//! Returns the Binomial Cnp. N should be <= BSplCLib::MaxDegree(). <br>
Standard_EXPORT static Standard_Real Bin(const Standard_Integer N,const Standard_Integer P) ;
//! Computes the derivatives of a ratio at order <br>
//! <N> in dimension <Dimension>. <br>
//! <br>
//! <Ders> is an array containing the values of the <br>
//! input derivatives from 0 to Min(<N>,<Degree>). <br>
//! For orders higher than <Degree> the inputcd /s2d1/BMDL/ <br>
//! derivatives are assumed to be 0. <br>
//! <br>
//! Content of <Ders> : <br>
//! <br>
//! x(1),x(2),...,x(Dimension),w <br>
//! x'(1),x'(2),...,x'(Dimension),w' <br>
//! x''(1),x''(2),...,x''(Dimension),w'' <br>
//! <br>
//! If <All> is false, only the derivative at order <br>
//! <N> is computed. <RDers> is an array of length <br>
//! Dimension which will contain the result : <br>
//! <br>
//! x(1)/w , x(2)/w , ... derivated <N> times <br>
//! <br>
//! If <All> is true all the derivatives up to order <br>
//! <N> are computed. <RDers> is an array of length <br>
//! Dimension * (N+1) which will contains : <br>
//! <br>
//! x(1)/w , x(2)/w , ... <br>
//! x(1)/w , x(2)/w , ... derivated <1> times <br>
//! x(1)/w , x(2)/w , ... derivated <2> times <br>
//! ... <br>
//! x(1)/w , x(2)/w , ... derivated <N> times <br>
//! <br>
//! Warning: <RDers> must be dimensionned properly. <br>
Standard_EXPORT static void RationalDerivative(const Standard_Integer Degree,const Standard_Integer N,const Standard_Integer Dimension,Standard_Real& Ders,Standard_Real& RDers,const Standard_Boolean All = Standard_True) ;
//! Computes DerivativesRequest derivatives of a ratio at <br>
//! of a BSpline function of degree <Degree> <br>
//! dimension <Dimension>. <br>
//! <br>
//! <PolesDerivatives> is an array containing the values <br>
//! of the input derivatives from 0 to <DerivativeRequest> <br>
//! For orders higher than <Degree> the input <br>
//! derivatives are assumed to be 0. <br>
//! <br>
//! Content of <PoleasDerivatives> : <br>
//! <br>
//! x(1),x(2),...,x(Dimension) <br>
//! x'(1),x'(2),...,x'(Dimension) <br>
//! x''(1),x''(2),...,x''(Dimension) <br>
//! <br>
//! <br>
//! WeightsDerivatives is an array that contains derivatives <br>
//! from 0 to <DerivativeRequest> <br>
//! After returning from the routine the array <br>
//! RationalDerivatives contains the following <br>
//! x(1)/w , x(2)/w , ... <br>
//! x(1)/w , x(2)/w , ... derivated once <br>
//! x(1)/w , x(2)/w , ... twice <br>
//! x(1)/w , x(2)/w , ... derivated <DerivativeRequest> times <br>
//! <br>
//! The array RationalDerivatives and PolesDerivatives <br>
//! can be same since the overwrite is non destructive within <br>
//! the algorithm <br>
//! <br>
//! Warning: <RationalDerivates> must be dimensionned properly. <br>
Standard_EXPORT static void RationalDerivatives(const Standard_Integer DerivativesRequest,const Standard_Integer Dimension,Standard_Real& PolesDerivatives,Standard_Real& WeightsDerivatives,Standard_Real& RationalDerivates) ;
//! Performs Horner method with synthethic division <br>
//! for derivatives <br>
//! parameter <U>, with <Degree> and <Dimension>. <br>
//! PolynomialCoeff are stored in the following fashion <br>
//! c0(1) c0(2) .... c0(Dimension) <br>
//! c1(1) c1(2) .... c1(Dimension) <br>
//! <br>
//! <br>
//! cDegree(1) cDegree(2) .... cDegree(Dimension) <br>
//! where the polynomial is defined as : <br>
//! <br>
//! 2 Degree <br>
//! c0 + c1 X + c2 X + .... cDegree X <br>
//! <br>
//! Results stores the result in the following format <br>
//! <br>
//! f(1) f(2) .... f(Dimension) <br>
//! (1) (1) (1) <br>
//! f (1) f (2) .... f (Dimension) <br>
//! <br>
//! (DerivativeRequest) (DerivativeRequest) <br>
//! f (1) f (Dimension) <br>
//! <br>
//! this just evaluates the point at parameter U <br>
//! <br>
//! Warning: <Results> and <PolynomialCoeff> must be dimensioned properly <br>
//! <br>
//! <br>
Standard_EXPORT static void EvalPolynomial(const Standard_Real U,const Standard_Integer DerivativeOrder,const Standard_Integer Degree,const Standard_Integer Dimension,Standard_Real& PolynomialCoeff,Standard_Real& Results) ;
//! Same as above with DerivativeOrder = 0; <br>
Standard_EXPORT static void NoDerivativeEvalPolynomial(const Standard_Real U,const Standard_Integer Degree,const Standard_Integer Dimension,const Standard_Integer DegreeDimension,Standard_Real& PolynomialCoeff,Standard_Real& Results) ;
//! Applies EvalPolynomial twice to evaluate the derivative <br>
//! of orders UDerivativeOrder in U, VDerivativeOrder in V <br>
//! at parameters U,V <br>
//! <br>
//! <br>
//! PolynomialCoeff are stored in the following fashion <br>
//! c00(1) .... c00(Dimension) <br>
//! c10(1) .... c10(Dimension) <br>
//! .... <br>
//! cm0(1) .... cm0(Dimension) <br>
//! .... <br>
//! c01(1) .... c01(Dimension) <br>
//! c11(1) .... c11(Dimension) <br>
//! .... <br>
//! cm1(1) .... cm1(Dimension) <br>
//! .... <br>
//! c0n(1) .... c0n(Dimension) <br>
//! c1n(1) .... c1n(Dimension) <br>
//! .... <br>
//! cmn(1) .... cmn(Dimension) <br>
//! <br>
//! <br>
//! where the polynomial is defined as : <br>
//! 2 m <br>
//! c00 + c10 U + c20 U + .... + cm0 U <br>
//! 2 m <br>
//! + c01 V + c11 UV + c21 U V + .... + cm1 U V <br>
//! n m n <br>
//! + .... + c0n V + .... + cmn U V <br>
//! <br>
//! with m = UDegree and n = VDegree <br>
//! <br>
//! Results stores the result in the following format <br>
//! <br>
//! f(1) f(2) .... f(Dimension) <br>
//! <br>
//! Warning: <Results> and <PolynomialCoeff> must be dimensioned properly <br>
//! <br>
//! <br>
Standard_EXPORT static void EvalPoly2Var(const Standard_Real U,const Standard_Real V,const Standard_Integer UDerivativeOrder,const Standard_Integer VDerivativeOrder,const Standard_Integer UDegree,const Standard_Integer VDegree,const Standard_Integer Dimension,Standard_Real& PolynomialCoeff,Standard_Real& Results) ;
//! Performs the Lagrange Interpolation of <br>
//! given series of points with given parameters <br>
//! with the requested derivative order <br>
//! Results will store things in the following format <br>
//! with d = DerivativeOrder <br>
//! <br>
//! [0], [Dimension-1] : value <br>
//! [Dimension], [Dimension + Dimension-1] : first derivative <br>
//! <br>
//! [d *Dimension], [d*Dimension + Dimension-1]: dth derivative <br>
Standard_EXPORT static Standard_Integer EvalLagrange(const Standard_Real U,const Standard_Integer DerivativeOrder,const Standard_Integer Degree,const Standard_Integer Dimension,Standard_Real& ValueArray,Standard_Real& ParameterArray,Standard_Real& Results) ;
//! Performs the Cubic Hermite Interpolation of <br>
//! given series of points with given parameters <br>
//! with the requested derivative order. <br>
//! ValueArray stores the value at the first and <br>
//! last parameter. It has the following format : <br>
//! [0], [Dimension-1] : value at first param <br>
//! [Dimension], [Dimension + Dimension-1] : value at last param <br>
//! Derivative array stores the value of the derivatives <br>
//! at the first parameter and at the last parameter <br>
//! in the following format <br>
//! [0], [Dimension-1] : derivative at <br>
//! first param <br>
//! [Dimension], [Dimension + Dimension-1] : derivative at <br>
//! last param <br>
//! <br>
//! ParameterArray stores the first and last parameter <br>
//! in the following format : <br>
//! [0] : first parameter <br>
//! [1] : last parameter <br>
//! <br>
//! Results will store things in the following format <br>
//! with d = DerivativeOrder <br>
//! <br>
//! [0], [Dimension-1] : value <br>
//! [Dimension], [Dimension + Dimension-1] : first derivative <br>
//! <br>
//! [d *Dimension], [d*Dimension + Dimension-1]: dth derivative <br>
Standard_EXPORT static Standard_Integer EvalCubicHermite(const Standard_Real U,const Standard_Integer DerivativeOrder,const Standard_Integer Dimension,Standard_Real& ValueArray,Standard_Real& DerivativeArray,Standard_Real& ParameterArray,Standard_Real& Results) ;
//! This build the coefficient of Hermite's polynomes on <br>
//! [FirstParameter, LastParameter] <br>
//! <br>
//! if j <= FirstOrder+1 then <br>
//! <br>
//! MatrixCoefs[i, j] = ith coefficient of the polynome H0,j-1 <br>
//! <br>
//! else <br>
//! <br>
//! MatrixCoefs[i, j] = ith coefficient of the polynome H1,k <br>
//! with k = j - FirstOrder - 2 <br>
//! <br>
//! return false if <br>
//! - |FirstParameter| > 100 <br>
//! - |LastParameter| > 100 <br>
//! - |FirstParameter| +|LastParameter| < 1/100 <br>
//! - |LastParameter - FirstParameter| <br>
//! / (|FirstParameter| +|LastParameter|) < 1/100 <br>
Standard_EXPORT static Standard_Boolean HermiteCoefficients(const Standard_Real FirstParameter,const Standard_Real LastParameter,const Standard_Integer FirstOrder,const Standard_Integer LastOrder,math_Matrix& MatrixCoefs) ;
Standard_EXPORT static void CoefficientsPoles(const TColgp_Array1OfPnt& Coefs,const TColStd_Array1OfReal& WCoefs,TColgp_Array1OfPnt& Poles,TColStd_Array1OfReal& WPoles) ;
Standard_EXPORT static void CoefficientsPoles(const TColgp_Array1OfPnt2d& Coefs,const TColStd_Array1OfReal& WCoefs,TColgp_Array1OfPnt2d& Poles,TColStd_Array1OfReal& WPoles) ;
Standard_EXPORT static void CoefficientsPoles(const TColStd_Array1OfReal& Coefs,const TColStd_Array1OfReal& WCoefs,TColStd_Array1OfReal& Poles,TColStd_Array1OfReal& WPoles) ;
Standard_EXPORT static void CoefficientsPoles(const Standard_Integer dim,const TColStd_Array1OfReal& Coefs,const TColStd_Array1OfReal& WCoefs,TColStd_Array1OfReal& Poles,TColStd_Array1OfReal& WPoles) ;
Standard_EXPORT static void Trimming(const Standard_Real U1,const Standard_Real U2,TColgp_Array1OfPnt& Coeffs,TColStd_Array1OfReal& WCoeffs) ;
Standard_EXPORT static void Trimming(const Standard_Real U1,const Standard_Real U2,TColgp_Array1OfPnt2d& Coeffs,TColStd_Array1OfReal& WCoeffs) ;
Standard_EXPORT static void Trimming(const Standard_Real U1,const Standard_Real U2,TColStd_Array1OfReal& Coeffs,TColStd_Array1OfReal& WCoeffs) ;
Standard_EXPORT static void Trimming(const Standard_Real U1,const Standard_Real U2,const Standard_Integer dim,TColStd_Array1OfReal& Coeffs,TColStd_Array1OfReal& WCoeffs) ;
Standard_EXPORT static void CoefficientsPoles(const TColgp_Array2OfPnt& Coefs,const TColStd_Array2OfReal& WCoefs,TColgp_Array2OfPnt& Poles,TColStd_Array2OfReal& WPoles) ;
Standard_EXPORT static void UTrimming(const Standard_Real U1,const Standard_Real U2,TColgp_Array2OfPnt& Coeffs,TColStd_Array2OfReal& WCoeffs) ;
Standard_EXPORT static void VTrimming(const Standard_Real V1,const Standard_Real V2,TColgp_Array2OfPnt& Coeffs,TColStd_Array2OfReal& WCoeffs) ;
//! Compute the coefficients in the canonical base of the <br>
//! polynomial satisfying the given constraints <br>
//! at the given parameters <br>
//! The array FirstContr(i,j) i=1,Dimension j=0,FirstOrder <br>
//! contains the values of the constraint at parameter FirstParameter <br>
//! idem for LastConstr <br>
Standard_EXPORT static Standard_Boolean HermiteInterpolate(const Standard_Integer Dimension,const Standard_Real FirstParameter,const Standard_Real LastParameter,const Standard_Integer FirstOrder,const Standard_Integer LastOrder,const TColStd_Array2OfReal& FirstConstr,const TColStd_Array2OfReal& LastConstr,TColStd_Array1OfReal& Coefficients) ;
//! Compute the number of points used for integral <br>
//! computations (NbGaussPoints) and the degree of Jacobi <br>
//! Polynomial (WorkDegree). <br>
//! ConstraintOrder has to be GeomAbs_C0, GeomAbs_C1 or GeomAbs_C2 <br>
//! Code: Code d' init. des parametres de discretisation. <br>
//! = -5 <br>
//! = -4 <br>
//! = -3 <br>
//! = -2 <br>
//! = -1 <br>
//! = 1 calcul rapide avec precision moyenne. <br>
//! = 2 calcul rapide avec meilleure precision. <br>
//! = 3 calcul un peu plus lent avec bonne precision. <br>
//! = 4 calcul lent avec la meilleure precision possible. <br>
Standard_EXPORT static void JacobiParameters(const GeomAbs_Shape ConstraintOrder,const Standard_Integer MaxDegree,const Standard_Integer Code,Standard_Integer& NbGaussPoints,Standard_Integer& WorkDegree) ;
//! translates from GeomAbs_Shape to Integer <br>
Standard_EXPORT static Standard_Integer NivConstr(const GeomAbs_Shape ConstraintOrder) ;
//! translates from Integer to GeomAbs_Shape <br>
Standard_EXPORT static GeomAbs_Shape ConstraintOrder(const Standard_Integer NivConstr) ;
Standard_EXPORT static void EvalLength(const Standard_Integer Degree,const Standard_Integer Dimension,Standard_Real& PolynomialCoeff,const Standard_Real U1,const Standard_Real U2,Standard_Real& Length) ;
Standard_EXPORT static void EvalLength(const Standard_Integer Degree,const Standard_Integer Dimension,Standard_Real& PolynomialCoeff,const Standard_Real U1,const Standard_Real U2,const Standard_Real Tol,Standard_Real& Length,Standard_Real& Error) ;
protected:
private:
friend class PLib_Base;
friend class PLib_JacobiPolynomial;
friend class PLib_HermitJacobi;
friend class PLib_DoubleJacobiPolynomial;
};
#include <PLib.lxx>
// other Inline functions and methods (like "C++: function call" methods)
#endif
|