/usr/include/oce/gp_Torus.hxx is in liboce-foundation-dev 0.15-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 | // This file is generated by WOK (CPPExt).
// Please do not edit this file; modify original file instead.
// The copyright and license terms as defined for the original file apply to
// this header file considered to be the "object code" form of the original source.
#ifndef _gp_Torus_HeaderFile
#define _gp_Torus_HeaderFile
#ifndef _Standard_HeaderFile
#include <Standard.hxx>
#endif
#ifndef _Standard_DefineAlloc_HeaderFile
#include <Standard_DefineAlloc.hxx>
#endif
#ifndef _Standard_Macro_HeaderFile
#include <Standard_Macro.hxx>
#endif
#ifndef _gp_Ax3_HeaderFile
#include <gp_Ax3.hxx>
#endif
#ifndef _Standard_Real_HeaderFile
#include <Standard_Real.hxx>
#endif
#ifndef _Standard_Storable_HeaderFile
#include <Standard_Storable.hxx>
#endif
#ifndef _Standard_Boolean_HeaderFile
#include <Standard_Boolean.hxx>
#endif
#ifndef _gp_Ax1_HeaderFile
#include <gp_Ax1.hxx>
#endif
#ifndef _Standard_PrimitiveTypes_HeaderFile
#include <Standard_PrimitiveTypes.hxx>
#endif
class Standard_ConstructionError;
class Standard_DimensionError;
class gp_Ax3;
class gp_Ax1;
class gp_Pnt;
class TColStd_Array1OfReal;
class gp_Ax2;
class gp_Trsf;
class gp_Vec;
Standard_EXPORT const Handle(Standard_Type)& STANDARD_TYPE(gp_Torus);
//! Describes a torus. <br>
//! A torus is defined by its major and minor radii and <br>
//! positioned in space with a coordinate system (a gp_Ax3 <br>
//! object) as follows: <br>
//! - The origin of the coordinate system is the center of the torus; <br>
//! - The surface is obtained by rotating a circle of radius <br>
//! equal to the minor radius of the torus about the "main <br>
//! Direction" of the coordinate system. This circle is <br>
//! located in the plane defined by the origin, the "X <br>
//! Direction" and the "main Direction" of the coordinate <br>
//! system. It is centered on the "X Axis" of this coordinate <br>
//! system, and located at a distance, from the origin of <br>
//! this coordinate system, equal to the major radius of the torus; <br>
//! - The "X Direction" and "Y Direction" define the <br>
//! reference plane of the torus. <br>
//! The coordinate system described above is the "local <br>
//! coordinate system" of the torus. <br>
//! Note: when a gp_Torus torus is converted into a <br>
//! Geom_ToroidalSurface torus, some implicit properties <br>
//! of its local coordinate system are used explicitly: <br>
//! - its origin, "X Direction", "Y Direction" and "main <br>
//! Direction" are used directly to define the parametric <br>
//! directions on the torus and the origin of the parameters, <br>
//! - its implicit orientation (right-handed or left-handed) <br>
//! gives the orientation (direct, indirect) to the <br>
//! Geom_ToroidalSurface torus. <br>
//! See Also <br>
//! gce_MakeTorus which provides functions for more <br>
//! complex torus constructions <br>
//! Geom_ToroidalSurface which provides additional <br>
//! functions for constructing tori and works, in particular, <br>
//! with the parametric equations of tori. <br>
class gp_Torus {
public:
DEFINE_STANDARD_ALLOC
//! creates an indefinite Torus. <br>
gp_Torus();
//! a torus centered on the origin of coordinate system <br>
//! A3, with major radius MajorRadius and minor radius <br>
//! MinorRadius, and with the reference plane defined <br>
//! by the origin, the "X Direction" and the "Y Direction" of A3. <br>
//! Warnings : <br>
//! It is not forbidden to create a torus with <br>
//! MajorRadius = MinorRadius = 0.0 <br>
//! Raises ConstructionError if MinorRadius < 0.0 or if MajorRadius < 0.0 <br>
gp_Torus(const gp_Ax3& A3,const Standard_Real MajorRadius,const Standard_Real MinorRadius);
//! Modifies this torus, by redefining its local coordinate <br>
//! system so that: <br>
//! - its origin and "main Direction" become those of the <br>
//! axis A1 (the "X Direction" and "Y Direction" are then recomputed). <br>
//! Raises ConstructionError if the direction of A1 is parallel to the "XDirection" <br>
//! of the coordinate system of the toroidal surface. <br>
void SetAxis(const gp_Ax1& A1) ;
//! Changes the location of the torus. <br>
void SetLocation(const gp_Pnt& Loc) ;
//! Assigns value to the major radius of this torus. <br>
//! Raises ConstructionError if MajorRadius - MinorRadius <= Resolution() <br>
void SetMajorRadius(const Standard_Real MajorRadius) ;
//! Assigns value to the minor radius of this torus. <br>
//! Raises ConstructionError if MinorRadius < 0.0 or if <br>
//! MajorRadius - MinorRadius <= Resolution from gp. <br>
void SetMinorRadius(const Standard_Real MinorRadius) ;
//! Changes the local coordinate system of the surface. <br>
void SetPosition(const gp_Ax3& A3) ;
//! Computes the area of the torus. <br>
Standard_Real Area() const;
//! Reverses the U parametrization of the torus <br>
//! reversing the YAxis. <br>
void UReverse() ;
//! Reverses the V parametrization of the torus <br>
//! reversing the ZAxis. <br>
Standard_EXPORT void VReverse() ;
//! returns true if the Ax3, the local coordinate system of this torus, is right handed. <br>
Standard_Boolean Direct() const;
//! returns the symmetry axis of the torus. <br>
const gp_Ax1& Axis() const;
//! Computes the coefficients of the implicit equation of the surface <br>
//! in the absolute cartesian coordinate system : <br>
//! Coef(1) * X**4 + Coef(2) * Y**4 + Coef(3) * Z**4 + <br>
//! Coef(4) * X**3 * Y + Coef(5) * X**3 * Z + Coef(6) * Y**3 * X + <br>
//! Coef(7) * Y**3 * Z + Coef(8) * Z**3 * X + Coef(9) * Z**3 * Y + <br>
//! Coef(10) * X**2 * Y**2 + Coef(11) * X**2 * Z**2 + <br>
//! Coef(12) * Y**2 * Z**2 + Coef(13) * X**3 + Coef(14) * Y**3 + <br>
//! Coef(15) * Z**3 + Coef(16) * X**2 * Y + Coef(17) * X**2 * Z + <br>
//! Coef(18) * Y**2 * X + Coef(19) * Y**2 * Z + Coef(20) * Z**2 * X + <br>
//! Coef(21) * Z**2 * Y + Coef(22) * X**2 + Coef(23) * Y**2 + <br>
//! Coef(24) * Z**2 + Coef(25) * X * Y + Coef(26) * X * Z + <br>
//! Coef(27) * Y * Z + Coef(28) * X + Coef(29) * Y + Coef(30) * Z + <br>
//! Coef(31) = 0.0 <br>
//! Raises DimensionError if the length of Coef is lower than 31. <br>
Standard_EXPORT void Coefficients(TColStd_Array1OfReal& Coef) const;
//! Returns the Torus's location. <br>
const gp_Pnt& Location() const;
//! Returns the local coordinates system of the torus. <br>
const gp_Ax3& Position() const;
//! returns the major radius of the torus. <br>
Standard_Real MajorRadius() const;
//! returns the minor radius of the torus. <br>
Standard_Real MinorRadius() const;
//! Computes the volume of the torus. <br>
Standard_Real Volume() const;
//! returns the axis X of the torus. <br>
gp_Ax1 XAxis() const;
//! returns the axis Y of the torus. <br>
gp_Ax1 YAxis() const;
Standard_EXPORT void Mirror(const gp_Pnt& P) ;
//! Performs the symmetrical transformation of a torus <br>
//! with respect to the point P which is the center of the <br>
//! symmetry. <br>
Standard_EXPORT gp_Torus Mirrored(const gp_Pnt& P) const;
Standard_EXPORT void Mirror(const gp_Ax1& A1) ;
//! Performs the symmetrical transformation of a torus with <br>
//! respect to an axis placement which is the axis of the <br>
//! symmetry. <br>
Standard_EXPORT gp_Torus Mirrored(const gp_Ax1& A1) const;
Standard_EXPORT void Mirror(const gp_Ax2& A2) ;
//! Performs the symmetrical transformation of a torus with respect <br>
//! to a plane. The axis placement A2 locates the plane of the <br>
//! of the symmetry : (Location, XDirection, YDirection). <br>
Standard_EXPORT gp_Torus Mirrored(const gp_Ax2& A2) const;
void Rotate(const gp_Ax1& A1,const Standard_Real Ang) ;
//! Rotates a torus. A1 is the axis of the rotation. <br>
//! Ang is the angular value of the rotation in radians. <br>
gp_Torus Rotated(const gp_Ax1& A1,const Standard_Real Ang) const;
void Scale(const gp_Pnt& P,const Standard_Real S) ;
//! Scales a torus. S is the scaling value. <br>
//! The absolute value of S is used to scale the torus <br>
gp_Torus Scaled(const gp_Pnt& P,const Standard_Real S) const;
void Transform(const gp_Trsf& T) ;
//! Transforms a torus with the transformation T from class Trsf. <br>
gp_Torus Transformed(const gp_Trsf& T) const;
void Translate(const gp_Vec& V) ;
//! Translates a torus in the direction of the vector V. <br>
//! The magnitude of the translation is the vector's magnitude. <br>
gp_Torus Translated(const gp_Vec& V) const;
void Translate(const gp_Pnt& P1,const gp_Pnt& P2) ;
//! Translates a torus from the point P1 to the point P2. <br>
gp_Torus Translated(const gp_Pnt& P1,const gp_Pnt& P2) const;
const gp_Ax3& _CSFDB_Getgp_Toruspos() const { return pos; }
Standard_Real _CSFDB_Getgp_TorusmajorRadius() const { return majorRadius; }
void _CSFDB_Setgp_TorusmajorRadius(const Standard_Real p) { majorRadius = p; }
Standard_Real _CSFDB_Getgp_TorusminorRadius() const { return minorRadius; }
void _CSFDB_Setgp_TorusminorRadius(const Standard_Real p) { minorRadius = p; }
protected:
private:
gp_Ax3 pos;
Standard_Real majorRadius;
Standard_Real minorRadius;
};
#include <gp_Torus.lxx>
// other Inline functions and methods (like "C++: function call" methods)
#endif
|