This file is indexed.

/usr/include/oce/gp_Trsf.hxx is in liboce-foundation-dev 0.15-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
// This file is generated by WOK (CPPExt).
// Please do not edit this file; modify original file instead.
// The copyright and license terms as defined for the original file apply to 
// this header file considered to be the "object code" form of the original source.

#ifndef _gp_Trsf_HeaderFile
#define _gp_Trsf_HeaderFile

#ifndef _Standard_HeaderFile
#include <Standard.hxx>
#endif
#ifndef _Standard_DefineAlloc_HeaderFile
#include <Standard_DefineAlloc.hxx>
#endif
#ifndef _Standard_Macro_HeaderFile
#include <Standard_Macro.hxx>
#endif

#ifndef _Standard_Real_HeaderFile
#include <Standard_Real.hxx>
#endif
#ifndef _gp_TrsfForm_HeaderFile
#include <gp_TrsfForm.hxx>
#endif
#ifndef _gp_Mat_HeaderFile
#include <gp_Mat.hxx>
#endif
#ifndef _gp_XYZ_HeaderFile
#include <gp_XYZ.hxx>
#endif
#ifndef _Standard_Storable_HeaderFile
#include <Standard_Storable.hxx>
#endif
#ifndef _Standard_Boolean_HeaderFile
#include <Standard_Boolean.hxx>
#endif
#ifndef _Standard_Integer_HeaderFile
#include <Standard_Integer.hxx>
#endif
#ifndef _Standard_PrimitiveTypes_HeaderFile
#include <Standard_PrimitiveTypes.hxx>
#endif
class Standard_ConstructionError;
class Standard_OutOfRange;
class gp_GTrsf;
class gp_Trsf2d;
class gp_Pnt;
class gp_Ax1;
class gp_Ax2;
class gp_Quaternion;
class gp_Ax3;
class gp_Vec;
class gp_XYZ;
class gp_Mat;


Standard_EXPORT const Handle(Standard_Type)& STANDARD_TYPE(gp_Trsf);

//! Defines a non-persistent transformation in 3D space. <br>
//!  The following transformations are implemented : <br>
//!  . Translation, Rotation, Scale <br>
//!  . Symmetry with respect to a point, a line, a plane. <br>
//!  Complex transformations can be obtained by combining the <br>
//!  previous elementary transformations using the method <br>
//!  Multiply. <br>
//!  The transformations can be represented as follow : <br>
//! <br>
//!       V1   V2   V3    T       XYZ        XYZ <br>
//!    | a11  a12  a13   a14 |   | x |      | x'| <br>
//!    | a21  a22  a23   a24 |   | y |      | y'| <br>
//!    | a31  a32  a33   a34 |   | z |   =  | z'| <br>
//!    |  0    0    0     1  |   | 1 |      | 1 | <br>
//! <br>
//!    where {V1, V2, V3} defines the vectorial part of the <br>
//!    transformation and T defines the translation part of the <br>
//!    transformation. <br>
class gp_Trsf  {

public:

  DEFINE_STANDARD_ALLOC

  //! Returns the identity transformation. <br>
      gp_Trsf();
  //! Creates  a 3D transformation from the 2D transformation T. <br>
//! The resulting transformation has a homogeneous <br>
//! vectorial part, V3, and a translation part, T3, built from T: <br>
//!       a11    a12 <br>
//! 0             a13 <br>
//! V3 =    a21    a22    0       T3 <br>
//! =   a23 <br>
//!           0    0    1. <br>
//! 0 <br>
//! It also has the same scale factor as T. This <br>
//! guarantees (by projection) that the transformation <br>
//! which would be performed by T in a plane (2D space) <br>
//! is performed by the resulting transformation in the xOy <br>
//! plane of the 3D space, (i.e. in the plane defined by the <br>
//! origin (0., 0., 0.) and the vectors DX (1., 0., 0.), and DY <br>
//! (0., 1., 0.)). The scale factor is applied to the entire space. <br>
  Standard_EXPORT   gp_Trsf(const gp_Trsf2d& T);
  
//!  Makes the transformation into a symmetrical transformation. <br>
//!  P is the center of the symmetry. <br>
        void SetMirror(const gp_Pnt& P) ;
  
//!  Makes the transformation into a symmetrical transformation. <br>
//!  A1 is the center of the axial symmetry. <br>
  Standard_EXPORT     void SetMirror(const gp_Ax1& A1) ;
  
//!  Makes the transformation into a symmetrical transformation. <br>
//!  A2 is the center of the planar symmetry <br>
//!  and defines the plane of symmetry by its origin, "X <br>
//!  Direction" and "Y Direction". <br>
  Standard_EXPORT     void SetMirror(const gp_Ax2& A2) ;
  
//!  Changes the transformation into a rotation. <br>
//!  A1 is the rotation axis and Ang is the angular value of the <br>
//!  rotation in radians. <br>
  Standard_EXPORT     void SetRotation(const gp_Ax1& A1,const Standard_Real Ang) ;
  
//!  Changes the transformation into a rotation defined by quaternion. <br>
//!  Note that rotation is performed around origin, i.e. <br>
//!  no translation is involved. <br>
  Standard_EXPORT     void SetRotation(const gp_Quaternion& R) ;
  
//!  Changes the transformation into a scale. <br>
//!  P is the center of the scale and S is the scaling value. <br>
//!  Raises ConstructionError  If <S> is null. <br>
  Standard_EXPORT     void SetScale(const gp_Pnt& P,const Standard_Real S) ;
  
//!  Modifies this transformation so that it transforms the <br>
//!  coordinate system defined by FromSystem1 into the <br>
//!  one defined by ToSystem2. After this modification, this <br>
//!  transformation transforms: <br>
//! -   the origin of FromSystem1 into the origin of ToSystem2, <br>
//! -   the "X Direction" of FromSystem1 into the "X <br>
//!   Direction" of ToSystem2, <br>
//! -   the "Y Direction" of FromSystem1 into the "Y <br>
//!   Direction" of ToSystem2, and <br>
//! -   the "main Direction" of FromSystem1 into the "main <br>
//!   Direction" of ToSystem2. <br>
//! Warning <br>
//! When you know the coordinates of a point in one <br>
//! coordinate system and you want to express these <br>
//! coordinates in another one, do not use the <br>
//! transformation resulting from this function. Use the <br>
//! transformation that results from SetTransformation instead. <br>
//! SetDisplacement and SetTransformation create <br>
//! related transformations: the vectorial part of one is the <br>
//! inverse of the vectorial part of the other. <br>
  Standard_EXPORT     void SetDisplacement(const gp_Ax3& FromSystem1,const gp_Ax3& ToSystem2) ;
  //! Modifies this transformation so that it transforms the <br>
//! coordinates of any point, (x, y, z), relative to a source <br>
//! coordinate system into the coordinates (x', y', z') which <br>
//! are relative to a target coordinate system, but which <br>
//! represent the same point <br>
//!  The transformation is from the coordinate <br>
//!  system "FromSystem1" to the coordinate system "ToSystem2". <br>
//! Example : <br>
//!  In a C++ implementation : <br>
//!  Real x1, y1, z1;  // are the coordinates of a point in the <br>
//!                    // local system FromSystem1 <br>
//!  Real x2, y2, z2;  // are the coordinates of a point in the <br>
//!                    // local system ToSystem2 <br>
//!  gp_Pnt P1 (x1, y1, z1) <br>
//!  Trsf T; <br>
//!  T.SetTransformation (FromSystem1, ToSystem2); <br>
//!  gp_Pnt P2 = P1.Transformed (T); <br>
//!  P2.Coord (x2, y2, z2); <br>
  Standard_EXPORT     void SetTransformation(const gp_Ax3& FromSystem1,const gp_Ax3& ToSystem2) ;
  //! Modifies this transformation so that it transforms the <br>
//!  coordinates of any point, (x, y, z), relative to a source <br>
//!  coordinate system into the coordinates (x', y', z') which <br>
//!  are relative to a target coordinate system, but which <br>
//!  represent the same point <br>
//!  The transformation is from the default coordinate system <br>
//!  {P(0.,0.,0.), VX (1.,0.,0.), VY (0.,1.,0.), VZ (0., 0. ,1.) } <br>
//!  to the local coordinate system defined with the Ax3 ToSystem. <br>
//!  Use in the same way  as the previous method. FromSystem1 is <br>
//!  defaulted to the absolute coordinate system. <br>
  Standard_EXPORT     void SetTransformation(const gp_Ax3& ToSystem) ;
  
//!  Sets transformation by directly specified rotation and translation. <br>
  Standard_EXPORT     void SetTransformation(const gp_Quaternion& R,const gp_Vec& T) ;
  
//!  Changes the transformation into a translation. <br>
//!  V is the vector of the translation. <br>
        void SetTranslation(const gp_Vec& V) ;
  
//! Makes the transformation into a translation where the translation vector <br>
//! is the vector (P1, P2) defined from point P1 to point P2. <br>
        void SetTranslation(const gp_Pnt& P1,const gp_Pnt& P2) ;
  //!  Replaces the translation vector with the vector V. <br>
  Standard_EXPORT     void SetTranslationPart(const gp_Vec& V) ;
  //!  Modifies the scale factor. <br>
//! Raises ConstructionError  If S is null. <br>
  Standard_EXPORT     void SetScaleFactor(const Standard_Real S) ;
  //! Sets the coefficients  of the transformation.  The <br>
//!          transformation  of the  point  x,y,z is  the point <br>
//!          x',y',z' with : <br>
//! <br>
//!          x' = a11 x + a12 y + a13 z + a14 <br>
//!          y' = a21 x + a22 y + a23 z + a24 <br>
//!          z' = a31 x + a32 y + a43 z + a34 <br>
//! <br>
//!          Tolang and  TolDist are  used  to  test  for  null <br>
//!          angles and null distances to determine the form of <br>
//!          the transformation (identity, translation, etc..). <br>
//! <br>
//!          The method Value(i,j) will return aij. <br>
//!          Raises ConstructionError if the determinant of  the aij is null. Or  if <br>
//!          the matrix as not a uniform scale. <br>
  Standard_EXPORT     void SetValues(const Standard_Real a11,const Standard_Real a12,const Standard_Real a13,const Standard_Real a14,const Standard_Real a21,const Standard_Real a22,const Standard_Real a23,const Standard_Real a24,const Standard_Real a31,const Standard_Real a32,const Standard_Real a33,const Standard_Real a34,const Standard_Real Tolang,const Standard_Real TolDist) ;
  //! Returns true if the determinant of the vectorial part of <br>
//! this transformation is negative. <br>
        Standard_Boolean IsNegative() const;
  
//!  Returns the nature of the transformation. It can be: an <br>
//! identity transformation, a rotation, a translation, a mirror <br>
//! transformation (relative to a point, an axis or a plane), a <br>
//! scaling transformation, or a compound transformation. <br>
        gp_TrsfForm Form() const;
  //! Returns the scale factor. <br>
        Standard_Real ScaleFactor() const;
  
//!  Returns the translation part of the transformation's matrix <br>
       const gp_XYZ& TranslationPart() const;
  
//!  Returns the boolean True if there is non-zero rotation. <br>
//!  In the presence of rotation, the output parameters store the axis <br>
//!  and the angle of rotation. The method always returns positive <br>
//!  value "theAngle", i.e., 0. < theAngle <= PI. <br>
//!  Note that this rotation is defined only by the vectorial part of <br>
//!  the transformation; generally you would need to check also the <br>
//!  translational part to obtain the axis (gp_Ax1) of rotation. <br>
  Standard_EXPORT     Standard_Boolean GetRotation(gp_XYZ& theAxis,Standard_Real& theAngle) const;
  
//!  Returns quaternion representing rotational part of the transformation. <br>
  Standard_EXPORT     gp_Quaternion GetRotation() const;
  
//!  Returns the vectorial part of the transformation. It is <br>
//!  a 3*3 matrix which includes the scale factor. <br>
  Standard_EXPORT     gp_Mat VectorialPart() const;
  
//!  Computes the homogeneous vectorial part of the transformation. <br>
//!  It is a 3*3 matrix which doesn't include the scale factor. <br>
//!  In other words, the vectorial part of this transformation is equal <br>
//!  to its homogeneous vectorial part, multiplied by the scale factor. <br>
//!  The coefficients of this matrix must be multiplied by the <br>
//!  scale factor to obtain the coefficients of the transformation. <br>
       const gp_Mat& HVectorialPart() const;
  
//!  Returns the coefficients of the transformation's matrix. <br>
//!  It is a 3 rows * 4 columns matrix. <br>
//!  This coefficient includes the scale factor. <br>
//!  Raises OutOfRanged if Row < 1 or Row > 3 or Col < 1 or Col > 4 <br>
        Standard_Real Value(const Standard_Integer Row,const Standard_Integer Col) const;
  
  Standard_EXPORT     void Invert() ;
  
//!  Computes the reverse transformation <br>
//!  Raises an exception if the matrix of the transformation <br>
//!  is not inversible, it means that the scale factor is lower <br>
//!  or equal to Resolution from package gp. <br>
//!  Computes the transformation composed with T and  <me>. <br>
//!  In a C++ implementation you can also write Tcomposed = <me> * T. <br>
//! Example : <br>
//!      Trsf T1, T2, Tcomp; ............... <br>
//!        Tcomp = T2.Multiplied(T1);         // or   (Tcomp = T2 * T1) <br>
//!        Pnt P1(10.,3.,4.); <br>
//!        Pnt P2 = P1.Transformed(Tcomp);    //using Tcomp <br>
//!        Pnt P3 = P1.Transformed(T1);       //using T1 then T2 <br>
//!        P3.Transform(T2);                  // P3 = P2 !!! <br>
        gp_Trsf Inverted() const;
  
        gp_Trsf Multiplied(const gp_Trsf& T) const;
      gp_Trsf operator *(const gp_Trsf& T) const
{
  return Multiplied(T);
}
  
//!  Computes the transformation composed with T and  <me>. <br>
//!  In a C++ implementation you can also write Tcomposed = <me> * T. <br>
//!  Example : <br>
//!      Trsf T1, T2, Tcomp; ............... <br>
//!      //composition : <br>
//!        Tcomp = T2.Multiplied(T1);         // or   (Tcomp = T2 * T1) <br>
//!      // transformation of a point <br>
//!        Pnt P1(10.,3.,4.); <br>
//!        Pnt P2 = P1.Transformed(Tcomp);    //using Tcomp <br>
//!        Pnt P3 = P1.Transformed(T1);       //using T1 then T2 <br>
//!        P3.Transform(T2);                  // P3 = P2 !!! <br>
//!  Computes the transformation composed with <me> and T. <br>
//!  <me> = T * <me> <br>
  Standard_EXPORT     void Multiply(const gp_Trsf& T) ;
    void operator *=(const gp_Trsf& T) 
{
  Multiply(T);
}
  
//!  Computes the transformation composed with <me> and T. <br>
//!  <me> = T * <me> <br>
  Standard_EXPORT     void PreMultiply(const gp_Trsf& T) ;
  
  Standard_EXPORT     void Power(const Standard_Integer N) ;
  
//!  Computes the following composition of transformations <br>
//!  <me> * <me> * .......* <me>, N time. <br>
//!  if N = 0 <me> = Identity <br>
//!  if N < 0 <me> = <me>.Inverse() *...........* <me>.Inverse(). <br>
//! <br>
//!  Raises if N < 0 and if the matrix of the transformation not <br>
//!  inversible. <br>
        gp_Trsf Powered(const Standard_Integer N) ;
  
        void Transforms(Standard_Real& X,Standard_Real& Y,Standard_Real& Z) const;
  //! Transformation of a triplet XYZ with a Trsf <br>
        void Transforms(gp_XYZ& Coord) const;
    Standard_Real _CSFDB_Getgp_Trsfscale() const { return scale; }
    void _CSFDB_Setgp_Trsfscale(const Standard_Real p) { scale = p; }
    gp_TrsfForm _CSFDB_Getgp_Trsfshape() const { return shape; }
    void _CSFDB_Setgp_Trsfshape(const gp_TrsfForm p) { shape = p; }
    const gp_Mat& _CSFDB_Getgp_Trsfmatrix() const { return matrix; }
    const gp_XYZ& _CSFDB_Getgp_Trsfloc() const { return loc; }

friend class gp_GTrsf;


protected:




private: 


Standard_Real scale;
gp_TrsfForm shape;
gp_Mat matrix;
gp_XYZ loc;


};


#include <gp_Trsf.lxx>



// other Inline functions and methods (like "C++: function call" methods)


#endif