This file is indexed.

/usr/include/oce/gp_Vec.hxx is in liboce-foundation-dev 0.15-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
// This file is generated by WOK (CPPExt).
// Please do not edit this file; modify original file instead.
// The copyright and license terms as defined for the original file apply to 
// this header file considered to be the "object code" form of the original source.

#ifndef _gp_Vec_HeaderFile
#define _gp_Vec_HeaderFile

#ifndef _Standard_HeaderFile
#include <Standard.hxx>
#endif
#ifndef _Standard_DefineAlloc_HeaderFile
#include <Standard_DefineAlloc.hxx>
#endif
#ifndef _Standard_Macro_HeaderFile
#include <Standard_Macro.hxx>
#endif

#ifndef _gp_XYZ_HeaderFile
#include <gp_XYZ.hxx>
#endif
#ifndef _Standard_Storable_HeaderFile
#include <Standard_Storable.hxx>
#endif
#ifndef _Standard_Real_HeaderFile
#include <Standard_Real.hxx>
#endif
#ifndef _Standard_Integer_HeaderFile
#include <Standard_Integer.hxx>
#endif
#ifndef _Standard_Boolean_HeaderFile
#include <Standard_Boolean.hxx>
#endif
#ifndef _Standard_PrimitiveTypes_HeaderFile
#include <Standard_PrimitiveTypes.hxx>
#endif
class Standard_ConstructionError;
class Standard_DomainError;
class Standard_OutOfRange;
class gp_VectorWithNullMagnitude;
class gp_Dir;
class gp_XYZ;
class gp_Pnt;
class gp_Ax1;
class gp_Ax2;
class gp_Trsf;


Standard_EXPORT const Handle(Standard_Type)& STANDARD_TYPE(gp_Vec);


//!  Defines a non-persistent vector in 3D space. <br>
class gp_Vec  {

public:

  DEFINE_STANDARD_ALLOC

  //! Creates a zero vector. <br>
      gp_Vec();
  //! Creates a unitary vector from a direction V. <br>
      gp_Vec(const gp_Dir& V);
  //! Creates a vector with a triplet of coordinates. <br>
      gp_Vec(const gp_XYZ& Coord);
  //! Creates a point with its three cartesian coordinates. <br>
      gp_Vec(const Standard_Real Xv,const Standard_Real Yv,const Standard_Real Zv);
  
//!  Creates a vector from two points. The length of the vector <br>
//!  is the distance between P1 and P2 <br>
      gp_Vec(const gp_Pnt& P1,const gp_Pnt& P2);
  //! Changes the coordinate of range Index <br>
//!  Index = 1 => X is modified <br>
//!  Index = 2 => Y is modified <br>
//!  Index = 3 => Z is modified <br>//! Raised if Index != {1, 2, 3}. <br>
        void SetCoord(const Standard_Integer Index,const Standard_Real Xi) ;
  //! For this vector, assigns <br>
//! -   the values Xv, Yv and Zv to its three coordinates. <br>
        void SetCoord(const Standard_Real Xv,const Standard_Real Yv,const Standard_Real Zv) ;
  //! Assigns the given value to the X coordinate of this vector. <br>
        void SetX(const Standard_Real X) ;
  //! Assigns the given value to the X coordinate of this vector. <br>
        void SetY(const Standard_Real Y) ;
  //! Assigns the given value to the X coordinate of this vector. <br>
        void SetZ(const Standard_Real Z) ;
  //! Assigns the three coordinates of Coord to this vector. <br>
        void SetXYZ(const gp_XYZ& Coord) ;
  
//!  Returns the coordinate of range Index : <br>
//!  Index = 1 => X is returned <br>
//!  Index = 2 => Y is returned <br>
//!  Index = 3 => Z is returned <br>//! Raised if Index != {1, 2, 3}. <br>
        Standard_Real Coord(const Standard_Integer Index) const;
  //! For this vector returns its three coordinates Xv, Yv, and Zvinline <br>
        void Coord(Standard_Real& Xv,Standard_Real& Yv,Standard_Real& Zv) const;
  //! For this vector, returns its X coordinate. <br>
        Standard_Real X() const;
  //! For this vector, returns its Y coordinate. <br>
        Standard_Real Y() const;
  //! For this vector, returns its Z  coordinate. <br>
        Standard_Real Z() const;
  //!    For this vector, returns <br>
//! -   its three coordinates as a number triple <br>
       const gp_XYZ& XYZ() const;
  
//!  Returns True if the two vectors have the same magnitude value <br>
//!  and the same direction. The precision values are LinearTolerance <br>
//!  for the magnitude and AngularTolerance for the direction. <br>
  Standard_EXPORT     Standard_Boolean IsEqual(const gp_Vec& Other,const Standard_Real LinearTolerance,const Standard_Real AngularTolerance) const;
  
//!  Returns True if abs(<me>.Angle(Other) - PI/2.) <= AngularTolerance <br>
//!   Raises VectorWithNullMagnitude if <me>.Magnitude() <= Resolution or <br>
//!  Other.Magnitude() <= Resolution from gp <br>
        Standard_Boolean IsNormal(const gp_Vec& Other,const Standard_Real AngularTolerance) const;
  
//!  Returns True if PI - <me>.Angle(Other) <= AngularTolerance <br>
//!  Raises VectorWithNullMagnitude if <me>.Magnitude() <= Resolution or <br>
//!  Other.Magnitude() <= Resolution from gp <br>
        Standard_Boolean IsOpposite(const gp_Vec& Other,const Standard_Real AngularTolerance) const;
  
//!  Returns True if Angle(<me>, Other) <= AngularTolerance or <br>
//!  PI - Angle(<me>, Other) <= AngularTolerance <br>
//!  This definition means that two parallel vectors cannot define <br>
//!  a plane but two vectors with opposite directions are considered <br>
//!  as parallel. Raises VectorWithNullMagnitude if <me>.Magnitude() <= Resolution or <br>
//!  Other.Magnitude() <= Resolution from gp <br>
        Standard_Boolean IsParallel(const gp_Vec& Other,const Standard_Real AngularTolerance) const;
  
//!  Computes the angular value between <me> and <Other> <br>
//!  Returns the angle value between 0 and PI in radian. <br>
//!    Raises VectorWithNullMagnitude if <me>.Magnitude() <= Resolution from gp or <br>
//!  Other.Magnitude() <= Resolution because the angular value is <br>
//!  indefinite if one of the vectors has a null magnitude. <br>
        Standard_Real Angle(const gp_Vec& Other) const;
  //! Computes the angle, in radians, between this vector and <br>
//! vector Other. The result is a value between -Pi and Pi. <br>
//! For this, VRef defines the positive sense of rotation: the <br>
//! angular value is positive, if the cross product this ^ Other <br>
//! has the same orientation as VRef relative to the plane <br>
//! defined by the vectors this and Other. Otherwise, the <br>
//! angular value is negative. <br>
//! Exceptions <br>
//! gp_VectorWithNullMagnitude if the magnitude of this <br>
//! vector, the vector Other, or the vector VRef is less than or <br>
//! equal to gp::Resolution(). <br>
//! Standard_DomainError if this vector, the vector Other, <br>
//! and the vector VRef are coplanar, unless this vector and <br>
//! the vector Other are parallel. <br>
        Standard_Real AngleWithRef(const gp_Vec& Other,const gp_Vec& VRef) const;
  //! Computes the magnitude of this vector. <br>
        Standard_Real Magnitude() const;
  //! Computes the square magnitude of this vector. <br>//! Adds two vectors <br>
        Standard_Real SquareMagnitude() const;
  
        void Add(const gp_Vec& Other) ;
      void operator +=(const gp_Vec& Other) 
{
  Add(Other);
}
  //! Adds two vectors <br>//! Subtracts two vectors <br>
        gp_Vec Added(const gp_Vec& Other) const;
      gp_Vec operator +(const gp_Vec& Other) const
{
  return Added(Other);
}
  
        void Subtract(const gp_Vec& Right) ;
      void operator -=(const gp_Vec& Right) 
{
  Subtract(Right);
}
  //! Subtracts two vectors <br>//! Multiplies a vector by a scalar <br>
        gp_Vec Subtracted(const gp_Vec& Right) const;
      gp_Vec operator -(const gp_Vec& Right) const
{
  return Subtracted(Right);
}
  
        void Multiply(const Standard_Real Scalar) ;
      void operator *=(const Standard_Real Scalar) 
{
  Multiply(Scalar);
}
  //! Multiplies a vector by a scalar <br>//! Divides a vector by a scalar <br>
        gp_Vec Multiplied(const Standard_Real Scalar) const;
      gp_Vec operator *(const Standard_Real Scalar) const
{
  return Multiplied(Scalar);
}
  
        void Divide(const Standard_Real Scalar) ;
      void operator /=(const Standard_Real Scalar) 
{
  Divide(Scalar);
}
  //! Divides a vector by a scalar <br>//! computes the cross product between two vectors <br>
        gp_Vec Divided(const Standard_Real Scalar) const;
      gp_Vec operator /(const Standard_Real Scalar) const
{
  return Divided(Scalar);
}
  
        void Cross(const gp_Vec& Right) ;
      void operator ^=(const gp_Vec& Right) 
{
  Cross(Right);
}
  //! computes the cross product between two vectors <br>
        gp_Vec Crossed(const gp_Vec& Right) const;
      gp_Vec operator ^(const gp_Vec& Right) const
{
  return Crossed(Right);
}
  
//!  Computes the magnitude of the cross <br>
//!  product between <me> and Right. <br>
//!  Returns || <me> ^ Right || <br>
        Standard_Real CrossMagnitude(const gp_Vec& Right) const;
  
//!  Computes the square magnitude of <br>
//!  the cross product between <me> and Right. <br>
//!  Returns || <me> ^ Right ||**2 <br>//! Computes the triple vector product. <br>
//!  <me> ^ (V1 ^ V2) <br>
        Standard_Real CrossSquareMagnitude(const gp_Vec& Right) const;
  
        void CrossCross(const gp_Vec& V1,const gp_Vec& V2) ;
  //! Computes the triple vector product. <br>
//!  <me> ^ (V1 ^ V2) <br>
        gp_Vec CrossCrossed(const gp_Vec& V1,const gp_Vec& V2) const;
  //! computes the scalar product <br>
        Standard_Real Dot(const gp_Vec& Other) const;
      Standard_Real operator *(const gp_Vec& Other) const
{
  return Dot(Other);
}
  //! Computes the triple scalar product <me> * (V1 ^ V2). <br>//! normalizes a vector <br>
//!  Raises an exception if the magnitude of the vector is <br>
//!  lower or equal to Resolution from gp. <br>
        Standard_Real DotCross(const gp_Vec& V1,const gp_Vec& V2) const;
  
        void Normalize() ;
  //! normalizes a vector <br>
//!  Raises an exception if the magnitude of the vector is <br>
//!  lower or equal to Resolution from gp. <br>//! Reverses the direction of a vector <br>
        gp_Vec Normalized() const;
  
        void Reverse() ;
  //! Reverses the direction of a vector <br>
        gp_Vec Reversed() const;
      gp_Vec operator -() const
{
  return Reversed();
}
  
//!  <me> is setted to the following linear form : <br>
//!  A1 * V1 + A2 * V2 + A3 * V3 + V4 <br>
        void SetLinearForm(const Standard_Real A1,const gp_Vec& V1,const Standard_Real A2,const gp_Vec& V2,const Standard_Real A3,const gp_Vec& V3,const gp_Vec& V4) ;
  
//!  <me> is setted to the following linear form : <br>
//!  A1 * V1 + A2 * V2 + A3 * V3 <br>
        void SetLinearForm(const Standard_Real A1,const gp_Vec& V1,const Standard_Real A2,const gp_Vec& V2,const Standard_Real A3,const gp_Vec& V3) ;
  
//!  <me> is setted to the following linear form : <br>
//!  A1 * V1 + A2 * V2 + V3 <br>
        void SetLinearForm(const Standard_Real A1,const gp_Vec& V1,const Standard_Real A2,const gp_Vec& V2,const gp_Vec& V3) ;
  
//!  <me> is setted to the following linear form : <br>
//!  A1 * V1 + A2 * V2 <br>
        void SetLinearForm(const Standard_Real A1,const gp_Vec& V1,const Standard_Real A2,const gp_Vec& V2) ;
  
//!  <me> is setted to the following linear form : A1 * V1 + V2 <br>
        void SetLinearForm(const Standard_Real A1,const gp_Vec& V1,const gp_Vec& V2) ;
  
//!  <me> is setted to the following linear form : V1 + V2 <br>
        void SetLinearForm(const gp_Vec& V1,const gp_Vec& V2) ;
  
  Standard_EXPORT     void Mirror(const gp_Vec& V) ;
  
//!  Performs the symmetrical transformation of a vector <br>
//!  with respect to the vector V which is the center of <br>
//!  the  symmetry. <br>
  Standard_EXPORT     gp_Vec Mirrored(const gp_Vec& V) const;
  
  Standard_EXPORT     void Mirror(const gp_Ax1& A1) ;
  
//!  Performs the symmetrical transformation of a vector <br>
//!  with respect to an axis placement which is the axis <br>
//!  of the symmetry. <br>
  Standard_EXPORT     gp_Vec Mirrored(const gp_Ax1& A1) const;
  
  Standard_EXPORT     void Mirror(const gp_Ax2& A2) ;
  
//!  Performs the symmetrical transformation of a vector <br>
//!  with respect to a plane. The axis placement A2 locates <br>
//!  the plane of the symmetry : (Location, XDirection, YDirection). <br>
  Standard_EXPORT     gp_Vec Mirrored(const gp_Ax2& A2) const;
  
        void Rotate(const gp_Ax1& A1,const Standard_Real Ang) ;
  
//!  Rotates a vector. A1 is the axis of the rotation. <br>
//!  Ang is the angular value of the rotation in radians. <br>
        gp_Vec Rotated(const gp_Ax1& A1,const Standard_Real Ang) const;
  
        void Scale(const Standard_Real S) ;
  //! Scales a vector. S is the scaling value. <br>//! Transforms a vector with the transformation T. <br>
        gp_Vec Scaled(const Standard_Real S) const;
  
  Standard_EXPORT     void Transform(const gp_Trsf& T) ;
  //! Transforms a vector with the transformation T. <br>
        gp_Vec Transformed(const gp_Trsf& T) const;
    const gp_XYZ& _CSFDB_Getgp_Veccoord() const { return coord; }



protected:




private: 


gp_XYZ coord;


};


#include <gp_Vec.lxx>



// other Inline functions and methods (like "C++: function call" methods)


#endif