This file is indexed.

/usr/include/octave-3.8.1/octave/Sparse-diag-op-defs.h is in liboctave-dev 3.8.1-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
/* -*- C++ -*-

Copyright (C) 2009-2013 Jason Riedy, Jaroslav Hajek

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#if !defined (octave_Sparse_diag_op_defs_h)
#define octave_Sparse_diag_op_defs_h 1

// Matrix multiplication

template <typename RT, typename DM, typename SM>
RT do_mul_dm_sm (const DM& d, const SM& a)
{
  const octave_idx_type nr = d.rows ();
  const octave_idx_type nc = d.cols ();

  const octave_idx_type a_nr = a.rows ();
  const octave_idx_type a_nc = a.cols ();

  if (nc != a_nr)
    {
      gripe_nonconformant ("operator *", nr, nc, a_nr, a_nc);
      return RT ();
    }
  else
    {
      RT r (nr, a_nc, a.nnz ());

      octave_idx_type l = 0;

      for (octave_idx_type j = 0; j < a_nc; j++)
        {
          r.xcidx (j) = l;
          const octave_idx_type colend = a.cidx (j+1);
          for (octave_idx_type k = a.cidx (j); k < colend; k++)
            {
              const octave_idx_type i = a.ridx (k);
              if (i >= nr) break;
              r.xdata (l) = d.dgelem (i) * a.data (k);
              r.xridx (l) = i;
              l++;
            }
        }

      r.xcidx (a_nc) = l;

      r.maybe_compress (true);
      return r;
    }
}

template <typename RT, typename SM, typename DM>
RT do_mul_sm_dm (const SM& a, const DM& d)
{
  const octave_idx_type nr = d.rows ();
  const octave_idx_type nc = d.cols ();

  const octave_idx_type a_nr = a.rows ();
  const octave_idx_type a_nc = a.cols ();

  if (nr != a_nc)
    {
      gripe_nonconformant ("operator *", a_nr, a_nc, nr, nc);
      return RT ();
    }
  else
    {

      const octave_idx_type mnc = nc < a_nc ? nc: a_nc;
      RT r (a_nr, nc, a.cidx (mnc));

      for (octave_idx_type j = 0; j < mnc; ++j)
        {
          const typename DM::element_type s = d.dgelem (j);
          const octave_idx_type colend = a.cidx (j+1);
          r.xcidx (j) = a.cidx (j);
          for (octave_idx_type k = a.cidx (j); k < colend; ++k)
            {
              r.xdata (k) = s * a.data (k);
              r.xridx (k) = a.ridx (k);
            }
        }
      for (octave_idx_type j = mnc; j <= nc; ++j)
        r.xcidx (j) = a.cidx (mnc);

      r.maybe_compress (true);
      return r;
    }
}

// FIXME: functors such as this should be gathered somewhere
template <typename T>
struct identity_val
  : public std::unary_function <T, T>
{
  T operator () (const T x) { return x; }
};

// Matrix addition

template <typename RT, typename SM, typename DM, typename OpA, typename OpD>
RT inner_do_add_sm_dm (const SM& a, const DM& d, OpA opa, OpD opd)
{
  using std::min;
  const octave_idx_type nr = d.rows ();
  const octave_idx_type nc = d.cols ();
  const octave_idx_type n = min (nr, nc);

  const octave_idx_type a_nr = a.rows ();
  const octave_idx_type a_nc = a.cols ();

  const octave_idx_type nz = a.nnz ();
  RT r (a_nr, a_nc, nz + n);
  octave_idx_type k = 0;

  for (octave_idx_type j = 0; j < nc; ++j)
    {
      octave_quit ();
      const octave_idx_type colend = a.cidx (j+1);
      r.xcidx (j) = k;
      octave_idx_type k_src = a.cidx (j), k_split;

      for (k_split = k_src; k_split < colend; k_split++)
        if (a.ridx (k_split) >= j)
          break;

      for (; k_src < k_split; k_src++, k++)
        {
          r.xridx (k) = a.ridx (k_src);
          r.xdata (k) = opa (a.data (k_src));
        }

      if (k_src < colend && a.ridx (k_src) == j)
        {
          r.xridx (k) = j;
          r.xdata (k) = opa (a.data (k_src)) + opd (d.dgelem (j));
          k++; k_src++;
        }
      else
        {
          r.xridx (k) = j;
          r.xdata (k) = opd (d.dgelem (j));
          k++;
        }

      for (; k_src < colend; k_src++, k++)
        {
          r.xridx (k) = a.ridx (k_src);
          r.xdata (k) = opa (a.data (k_src));
        }

    }
  r.xcidx (nc) = k;

  r.maybe_compress (true);
  return r;
}

template <typename RT, typename DM, typename SM>
RT do_commutative_add_dm_sm (const DM& d, const SM& a)
{
  // Extra function to ensure this is only emitted once.
  return inner_do_add_sm_dm<RT> (a, d,
                                 identity_val<typename SM::element_type> (),
                                 identity_val<typename DM::element_type> ());
}

template <typename RT, typename DM, typename SM>
RT do_add_dm_sm (const DM& d, const SM& a)
{
  if (a.rows () != d.rows () || a.cols () != d.cols ())
    {
      gripe_nonconformant ("operator +", d.rows (), d.cols (), a.rows (), a.cols ());
      return RT ();
    }
  else
    return do_commutative_add_dm_sm<RT> (d, a);
}

template <typename RT, typename DM, typename SM>
RT do_sub_dm_sm (const DM& d, const SM& a)
{
  if (a.rows () != d.rows () || a.cols () != d.cols ())
    {
      gripe_nonconformant ("operator -", d.rows (), d.cols (), a.rows (), a.cols ());
      return RT ();
    }
  else
    return inner_do_add_sm_dm<RT> (a, d, std::negate<typename SM::element_type> (),
                                   identity_val<typename DM::element_type> ());
}

template <typename RT, typename SM, typename DM>
RT do_add_sm_dm (const SM& a, const DM& d)
{
  if (a.rows () != d.rows () || a.cols () != d.cols ())
    {
      gripe_nonconformant ("operator +", a.rows (), a.cols (), d.rows (), d.cols ());
      return RT ();
    }
  else
    return do_commutative_add_dm_sm<RT> (d, a);
}

template <typename RT, typename SM, typename DM>
RT do_sub_sm_dm (const SM& a, const DM& d)
{
  if (a.rows () != d.rows () || a.cols () != d.cols ())
    {
      gripe_nonconformant ("operator -", a.rows (), a.cols (), d.rows (), d.cols ());
      return RT ();
    }
  else
    return inner_do_add_sm_dm<RT> (a, d,
                                   identity_val<typename SM::element_type> (),
                                   std::negate<typename DM::element_type> ());
}

#endif // octave_Sparse_diag_op_defs_h