/usr/include/octave-3.8.1/octave/idx-vector.h is in liboctave-dev 3.8.1-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 | /*
Copyright (C) 1993-2013 John W. Eaton
Copyright (C) 2008-2009 Jaroslav Hajek
Copyright (C) 2009 VZLU Prague
This file is part of Octave.
Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING. If not, see
<http://www.gnu.org/licenses/>.
*/
#if !defined (octave_idx_vector_h)
#define octave_idx_vector_h 1
#include <cassert>
#include <algorithm>
#include <iosfwd>
#include <memory>
#include "dim-vector.h"
#include "oct-inttypes.h"
#include "oct-alloc.h"
#include "oct-mem.h"
#include "oct-refcount.h"
template<class T> class Array;
template<class T> class Sparse;
class Range;
// Design rationale:
// idx_vector is a reference-counting, polymorphic pointer, that can contain
// 4 types of index objects: a magic colon, a range, a scalar, or an index vector.
// Polymorphic methods for single element access are provided, as well as
// templates implementing "early dispatch", i.e. hoisting the checks for index
// type out of loops.
class
OCTAVE_API
idx_vector
{
public:
enum idx_class_type
{
class_invalid = -1,
class_colon = 0,
class_range,
class_scalar,
class_vector,
class_mask
};
template<class T> friend class std::auto_ptr;
private:
class OCTAVE_API idx_base_rep
{
public:
idx_base_rep (void) : count (1), err (false) { }
virtual ~idx_base_rep (void) { }
// Non-range-checking element query.
virtual octave_idx_type xelem (octave_idx_type i) const = 0;
// Range-checking element query.
virtual octave_idx_type checkelem (octave_idx_type i) const = 0;
// Length of the index vector.
virtual octave_idx_type length (octave_idx_type n) const = 0;
// The maximum index + 1. The actual dimension is passed in.
virtual octave_idx_type extent (octave_idx_type n) const = 0;
// Index class.
virtual idx_class_type idx_class (void) const { return class_invalid; }
// Sorts, maybe uniqifies, and returns a clone object pointer.
virtual idx_base_rep *sort_uniq_clone (bool uniq = false) = 0;
// Sorts, and returns a sorting permutation (aka Array::sort).
virtual idx_base_rep *sort_idx (Array<octave_idx_type>&) = 0;
// Checks whether the index is colon or a range equivalent to colon.
virtual bool is_colon_equiv (octave_idx_type) const { return false; }
// The original dimensions of object (used when subscribing by matrices).
virtual dim_vector orig_dimensions (void) const { return dim_vector (); }
// i/o
virtual std::ostream& print (std::ostream& os) const = 0;
virtual Array<octave_idx_type> as_array (void);
octave_refcount<int> count;
bool err;
private:
// No copying!
idx_base_rep (const idx_base_rep&);
idx_base_rep& operator = (const idx_base_rep&);
};
// The magic colon index.
class OCTAVE_API idx_colon_rep : public idx_base_rep
{
public:
idx_colon_rep (void) { }
idx_colon_rep (char c);
octave_idx_type xelem (octave_idx_type i) const { return i; }
octave_idx_type checkelem (octave_idx_type i) const;
octave_idx_type length (octave_idx_type n) const { return n; }
octave_idx_type extent (octave_idx_type n) const { return n; }
idx_class_type idx_class (void) const { return class_colon; }
idx_base_rep *sort_uniq_clone (bool = false)
{ count++; return this; }
idx_base_rep *sort_idx (Array<octave_idx_type>&);
bool is_colon_equiv (octave_idx_type) const { return true; }
std::ostream& print (std::ostream& os) const;
private:
DECLARE_OCTAVE_ALLOCATOR
// No copying!
idx_colon_rep (const idx_colon_rep& idx);
idx_colon_rep& operator = (const idx_colon_rep& idx);
};
// To distinguish the "direct" constructors that blindly trust the data.
enum direct { DIRECT };
// The integer range index.
class OCTAVE_API idx_range_rep : public idx_base_rep
{
public:
idx_range_rep (octave_idx_type _start, octave_idx_type _len,
octave_idx_type _step, direct)
: idx_base_rep (), start(_start), len(_len), step(_step) { }
idx_range_rep (void)
: start(0), len(0), step(1) { }
// Zero-based constructor.
idx_range_rep (octave_idx_type _start, octave_idx_type _limit,
octave_idx_type _step);
idx_range_rep (const Range&);
octave_idx_type xelem (octave_idx_type i) const
{ return start + i * step; }
octave_idx_type checkelem (octave_idx_type i) const;
octave_idx_type length (octave_idx_type) const { return len; }
octave_idx_type extent (octave_idx_type n) const
{ return len ? std::max (n, (start + 1 + (step < 0 ? 0 : step * (len - 1))))
: n; }
idx_class_type idx_class (void) const { return class_range; }
idx_base_rep *sort_uniq_clone (bool uniq = false);
idx_base_rep *sort_idx (Array<octave_idx_type>&);
bool is_colon_equiv (octave_idx_type n) const
{ return start == 0 && step == 1 && len == n; }
dim_vector orig_dimensions (void) const
{ return dim_vector (1, len); }
octave_idx_type get_start (void) const { return start; }
octave_idx_type get_step (void) const { return step; }
std::ostream& print (std::ostream& os) const;
Range unconvert (void) const;
Array<octave_idx_type> as_array (void);
private:
DECLARE_OCTAVE_ALLOCATOR
// No copying!
idx_range_rep (const idx_range_rep& idx);
idx_range_rep& operator = (const idx_range_rep& idx);
octave_idx_type start, len, step;
};
// The integer scalar index.
class OCTAVE_API idx_scalar_rep : public idx_base_rep
{
public:
idx_scalar_rep (octave_idx_type i, direct)
: data (i) { }
idx_scalar_rep (void)
: data (0) { }
// Zero-based constructor.
idx_scalar_rep (octave_idx_type i);
template <class T>
idx_scalar_rep (T x);
octave_idx_type xelem (octave_idx_type) const { return data; }
octave_idx_type checkelem (octave_idx_type i) const;
octave_idx_type length (octave_idx_type) const { return 1; }
octave_idx_type extent (octave_idx_type n) const
{ return std::max (n, data + 1); }
idx_class_type idx_class (void) const { return class_scalar; }
idx_base_rep *sort_uniq_clone (bool = false)
{ count++; return this; }
idx_base_rep *sort_idx (Array<octave_idx_type>&);
bool is_colon_equiv (octave_idx_type n) const
{ return n == 1 && data == 0; }
dim_vector orig_dimensions (void) const { return dim_vector (1, 1); }
octave_idx_type get_data (void) const { return data; }
std::ostream& print (std::ostream& os) const;
double unconvert (void) const;
Array<octave_idx_type> as_array (void);
private:
DECLARE_OCTAVE_ALLOCATOR
// No copying!
idx_scalar_rep (const idx_scalar_rep& idx);
idx_scalar_rep& operator = (const idx_scalar_rep& idx);
octave_idx_type data;
};
// The integer vector index.
class OCTAVE_API idx_vector_rep : public idx_base_rep
{
public:
// Direct constructor.
idx_vector_rep (octave_idx_type *_data, octave_idx_type _len,
octave_idx_type _ext, const dim_vector& od, direct)
: data (_data), len (_len), ext (_ext), aowner (0), orig_dims (od) { }
idx_vector_rep (void)
: data (0), len (0), ext (0), aowner (0), orig_dims ()
{ }
// Zero-based constructor.
idx_vector_rep (const Array<octave_idx_type>& inda);
idx_vector_rep (const Array<octave_idx_type>& inda,
octave_idx_type _ext, direct);
template <class T>
idx_vector_rep (const Array<T>&);
idx_vector_rep (bool);
idx_vector_rep (const Array<bool>&, octave_idx_type = -1);
idx_vector_rep (const Sparse<bool>&);
~idx_vector_rep (void);
octave_idx_type xelem (octave_idx_type i) const { return data[i]; }
octave_idx_type checkelem (octave_idx_type i) const;
octave_idx_type length (octave_idx_type) const { return len; }
octave_idx_type extent (octave_idx_type n) const
{ return std::max (n, ext); }
idx_class_type idx_class (void) const { return class_vector; }
idx_base_rep *sort_uniq_clone (bool uniq = false);
idx_base_rep *sort_idx (Array<octave_idx_type>&);
dim_vector orig_dimensions (void) const { return orig_dims; }
const octave_idx_type *get_data (void) const { return data; }
std::ostream& print (std::ostream& os) const;
Array<double> unconvert (void) const;
Array<octave_idx_type> as_array (void);
private:
DECLARE_OCTAVE_ALLOCATOR
// No copying!
idx_vector_rep (const idx_vector_rep& idx);
idx_vector_rep& operator = (const idx_vector_rep& idx);
const octave_idx_type *data;
octave_idx_type len;
octave_idx_type ext;
// This is a trick to allow user-given zero-based arrays to be used
// as indices without copying. If the following pointer is nonzero,
// we do not own the data, but rather have an Array<octave_idx_type>
// object that provides us the data. Note that we need a pointer
// because we deferred the Array<T> declaration and we do not want
// it yet to be defined.
Array<octave_idx_type> *aowner;
dim_vector orig_dims;
};
// The logical mask index.
class OCTAVE_API idx_mask_rep : public idx_base_rep
{
public:
// Direct constructor.
idx_mask_rep (bool *_data, octave_idx_type _len,
octave_idx_type _ext, const dim_vector& od, direct)
: data (_data), len (_len), ext (_ext), lsti (-1), lste (-1),
aowner (0), orig_dims (od) { }
idx_mask_rep (void)
: data (0), len (0), ext (0), lsti (-1), lste (-1), aowner (0),
orig_dims ()
{ }
idx_mask_rep (bool);
idx_mask_rep (const Array<bool>&, octave_idx_type = -1);
~idx_mask_rep (void);
octave_idx_type xelem (octave_idx_type i) const;
octave_idx_type checkelem (octave_idx_type i) const;
octave_idx_type length (octave_idx_type) const { return len; }
octave_idx_type extent (octave_idx_type n) const
{ return std::max (n, ext); }
idx_class_type idx_class (void) const { return class_mask; }
idx_base_rep *sort_uniq_clone (bool = false)
{ count++; return this; }
idx_base_rep *sort_idx (Array<octave_idx_type>&);
dim_vector orig_dimensions (void) const { return orig_dims; }
bool is_colon_equiv (octave_idx_type n) const
{ return len == n && ext == n; }
const bool *get_data (void) const { return data; }
std::ostream& print (std::ostream& os) const;
Array<bool> unconvert (void) const;
Array<octave_idx_type> as_array (void);
private:
DECLARE_OCTAVE_ALLOCATOR
// No copying!
idx_mask_rep (const idx_mask_rep& idx);
idx_mask_rep& operator = (const idx_mask_rep& idx);
const bool *data;
octave_idx_type len;
octave_idx_type ext;
// FIXME: I'm not sure if this is a good design. Maybe it would be
// better to employ some sort of generalized iteration scheme.
mutable octave_idx_type lsti;
mutable octave_idx_type lste;
// This is a trick to allow user-given mask arrays to be used as
// indices without copying. If the following pointer is nonzero, we
// do not own the data, but rather have an Array<bool> object that
// provides us the data. Note that we need a pointer because we
// deferred the Array<T> declaration and we do not want it yet to be
// defined.
Array<bool> *aowner;
dim_vector orig_dims;
};
idx_vector (idx_base_rep *r) : rep (r) { }
// The shared empty vector representation (for fast default
// constructor).
static idx_vector_rep *nil_rep (void)
{
static idx_vector_rep ivr;
return &ivr;
}
// The shared empty vector representation with the error flag set.
static idx_vector_rep *err_rep (void)
{
static idx_vector_rep ivr;
ivr.err = true;
return &ivr;
}
// If there was an error in constructing the rep, replace it with
// empty vector for safety.
void chkerr (void)
{
if (rep->err)
{
if (--rep->count == 0)
delete rep;
rep = err_rep ();
rep->count++;
}
}
public:
// Fast empty constructor.
idx_vector (void) : rep (nil_rep ()) { rep->count++; }
// Zero-based constructors (for use from C++).
idx_vector (octave_idx_type i) : rep (new idx_scalar_rep (i))
{ chkerr (); }
idx_vector (octave_idx_type start, octave_idx_type limit,
octave_idx_type step = 1)
: rep (new idx_range_rep (start, limit, step))
{ chkerr (); }
static idx_vector
make_range (octave_idx_type start, octave_idx_type step,
octave_idx_type len)
{
return idx_vector (new idx_range_rep (start, len, step, DIRECT));
}
idx_vector (const Array<octave_idx_type>& inda)
: rep (new idx_vector_rep (inda))
{ chkerr (); }
// Directly pass extent, no checking.
idx_vector (const Array<octave_idx_type>& inda, octave_idx_type ext)
: rep (new idx_vector_rep (inda, ext, DIRECT))
{ }
// Colon is best constructed by simply copying (or referencing) this member.
static const idx_vector colon;
// or passing ':' here
idx_vector (char c) : rep (new idx_colon_rep (c)) { chkerr (); }
// Conversion constructors (used by interpreter).
template <class T>
idx_vector (octave_int<T> x) : rep (new idx_scalar_rep (x)) { chkerr (); }
idx_vector (double x) : rep (new idx_scalar_rep (x)) { chkerr (); }
idx_vector (float x) : rep (new idx_scalar_rep (x)) { chkerr (); }
// A scalar bool does not necessarily map to scalar index.
idx_vector (bool x) : rep (new idx_mask_rep (x)) { chkerr (); }
template <class T>
idx_vector (const Array<octave_int<T> >& nda) : rep (new idx_vector_rep (nda))
{ chkerr (); }
idx_vector (const Array<double>& nda) : rep (new idx_vector_rep (nda))
{ chkerr (); }
idx_vector (const Array<float>& nda) : rep (new idx_vector_rep (nda))
{ chkerr (); }
idx_vector (const Array<bool>& nda);
idx_vector (const Range& r)
: rep (new idx_range_rep (r))
{ chkerr (); }
idx_vector (const Sparse<bool>& nda) : rep (new idx_vector_rep (nda))
{ chkerr (); }
idx_vector (const idx_vector& a) : rep (a.rep) { rep->count++; }
~idx_vector (void)
{
if (--rep->count == 0)
delete rep;
}
idx_vector& operator = (const idx_vector& a)
{
if (this != &a)
{
if (--rep->count == 0)
delete rep;
rep = a.rep;
rep->count++;
}
return *this;
}
idx_class_type idx_class (void) const { return rep->idx_class (); }
octave_idx_type length (octave_idx_type n = 0) const
{ return rep->length (n); }
octave_idx_type extent (octave_idx_type n) const
{ return rep->extent (n); }
octave_idx_type xelem (octave_idx_type n) const
{ return rep->xelem (n); }
octave_idx_type checkelem (octave_idx_type n) const
{ return rep->checkelem (n); }
octave_idx_type operator () (octave_idx_type n) const
{
#if defined (BOUNDS_CHECKING)
return rep->checkelem (n);
#else
return rep->xelem (n);
#endif
}
operator bool (void) const
{ return ! rep->err; }
bool is_colon (void) const
{ return rep->idx_class () == class_colon; }
bool is_scalar (void) const
{ return rep->idx_class () == class_scalar; }
bool is_range (void) const
{ return rep->idx_class () == class_range; }
bool is_colon_equiv (octave_idx_type n) const
{ return rep->is_colon_equiv (n); }
idx_vector sorted (bool uniq = false) const
{ return idx_vector (rep->sort_uniq_clone (uniq)); }
idx_vector sorted (Array<octave_idx_type>& sidx) const
{ return idx_vector (rep->sort_idx (sidx)); }
dim_vector orig_dimensions (void) const { return rep->orig_dimensions (); }
octave_idx_type orig_rows (void) const
{ return orig_dimensions () (0); }
octave_idx_type orig_columns (void) const
{ return orig_dimensions () (1); }
int orig_empty (void) const
{ return (! is_colon () && orig_dimensions ().any_zero ()); }
// i/o
std::ostream& print (std::ostream& os) const { return rep->print (os); }
friend std::ostream& operator << (std::ostream& os, const idx_vector& a)
{ return a.print (os); }
// Slice with specializations. No checking of bounds!
//
// This is equivalent to the following loop (but much faster):
//
// for (octave_idx_type i = 0; i < idx->length (n); i++)
// dest[i] = src[idx(i)];
// return i;
//
template <class T>
octave_idx_type
index (const T *src, octave_idx_type n, T *dest) const
{
octave_idx_type len = rep->length (n);
switch (rep->idx_class ())
{
case class_colon:
copy_or_memcpy (len, src, dest);
break;
case class_range:
{
idx_range_rep * r = dynamic_cast<idx_range_rep *> (rep);
octave_idx_type start = r->get_start (), step = r->get_step ();
const T *ssrc = src + start;
if (step == 1)
copy_or_memcpy (len, ssrc, dest);
else if (step == -1)
std::reverse_copy (ssrc - len + 1, ssrc + 1, dest);
else if (step == 0)
std::fill_n (dest, len, *ssrc);
else
{
for (octave_idx_type i = 0, j = 0; i < len; i++, j += step)
dest[i] = ssrc[j];
}
}
break;
case class_scalar:
{
idx_scalar_rep * r = dynamic_cast<idx_scalar_rep *> (rep);
dest[0] = src[r->get_data ()];
}
break;
case class_vector:
{
idx_vector_rep * r = dynamic_cast<idx_vector_rep *> (rep);
const octave_idx_type *data = r->get_data ();
for (octave_idx_type i = 0; i < len; i++)
dest[i] = src[data[i]];
}
break;
case class_mask:
{
idx_mask_rep * r = dynamic_cast<idx_mask_rep *> (rep);
const bool *data = r->get_data ();
octave_idx_type ext = r->extent (0);
for (octave_idx_type i = 0; i < ext; i++)
if (data[i]) *dest++ = src[i];
}
break;
default:
assert (false);
break;
}
return len;
}
// Slice assignment with specializations. No checking of bounds!
//
// This is equivalent to the following loop (but much faster):
//
// for (octave_idx_type i = 0; i < idx->length (n); i++)
// dest[idx(i)] = src[i];
// return i;
//
template <class T>
octave_idx_type
assign (const T *src, octave_idx_type n, T *dest) const
{
octave_idx_type len = rep->length (n);
switch (rep->idx_class ())
{
case class_colon:
copy_or_memcpy (len, src, dest);
break;
case class_range:
{
idx_range_rep * r = dynamic_cast<idx_range_rep *> (rep);
octave_idx_type start = r->get_start (), step = r->get_step ();
T *sdest = dest + start;
if (step == 1)
copy_or_memcpy (len, src, sdest);
else if (step == -1)
std::reverse_copy (src, src + len, sdest - len + 1);
else
{
for (octave_idx_type i = 0, j = 0; i < len; i++, j += step)
sdest[j] = src[i];
}
}
break;
case class_scalar:
{
idx_scalar_rep * r = dynamic_cast<idx_scalar_rep *> (rep);
dest[r->get_data ()] = src[0];
}
break;
case class_vector:
{
idx_vector_rep * r = dynamic_cast<idx_vector_rep *> (rep);
const octave_idx_type *data = r->get_data ();
for (octave_idx_type i = 0; i < len; i++)
dest[data[i]] = src[i];
}
break;
case class_mask:
{
idx_mask_rep * r = dynamic_cast<idx_mask_rep *> (rep);
const bool *data = r->get_data ();
octave_idx_type ext = r->extent (0);
for (octave_idx_type i = 0; i < ext; i++)
if (data[i]) dest[i] = *src++;
}
break;
default:
assert (false);
break;
}
return len;
}
// Slice fill with specializations. No checking of bounds!
//
// This is equivalent to the following loop (but much faster):
//
// for (octave_idx_type i = 0; i < idx->length (n); i++)
// dest[idx(i)] = val;
// return i;
//
template <class T>
octave_idx_type
fill (const T& val, octave_idx_type n, T *dest) const
{
octave_idx_type len = rep->length (n);
switch (rep->idx_class ())
{
case class_colon:
std::fill (dest, dest + len, val);
break;
case class_range:
{
idx_range_rep * r = dynamic_cast<idx_range_rep *> (rep);
octave_idx_type start = r->get_start (), step = r->get_step ();
T *sdest = dest + start;
if (step == 1)
std::fill (sdest, sdest + len, val);
else if (step == -1)
std::fill (sdest - len + 1, sdest + 1, val);
else
{
for (octave_idx_type i = 0, j = 0; i < len; i++, j += step)
sdest[j] = val;
}
}
break;
case class_scalar:
{
idx_scalar_rep * r = dynamic_cast<idx_scalar_rep *> (rep);
dest[r->get_data ()] = val;
}
break;
case class_vector:
{
idx_vector_rep * r = dynamic_cast<idx_vector_rep *> (rep);
const octave_idx_type *data = r->get_data ();
for (octave_idx_type i = 0; i < len; i++)
dest[data[i]] = val;
}
break;
case class_mask:
{
idx_mask_rep * r = dynamic_cast<idx_mask_rep *> (rep);
const bool *data = r->get_data ();
octave_idx_type ext = r->extent (0);
for (octave_idx_type i = 0; i < ext; i++)
if (data[i]) dest[i] = val;
}
break;
default:
assert (false);
break;
}
return len;
}
// Generic non-breakable indexed loop. The loop body should be
// encapsulated in a single functor body. This is equivalent to the
// following loop (but faster, at least for simple inlined bodies):
//
// for (octave_idx_type i = 0; i < idx->length (n); i++) body (idx(i));
template <class Functor>
void
loop (octave_idx_type n, Functor body) const
{
octave_idx_type len = rep->length (n);
switch (rep->idx_class ())
{
case class_colon:
for (octave_idx_type i = 0; i < len; i++) body (i);
break;
case class_range:
{
idx_range_rep * r = dynamic_cast<idx_range_rep *> (rep);
octave_idx_type start = r->get_start (), step = r->get_step ();
octave_idx_type i, j;
if (step == 1)
for (i = start, j = start + len; i < j; i++) body (i);
else if (step == -1)
for (i = start, j = start - len; i > j; i--) body (i);
else
for (i = 0, j = start; i < len; i++, j += step) body (j);
}
break;
case class_scalar:
{
idx_scalar_rep * r = dynamic_cast<idx_scalar_rep *> (rep);
body (r->get_data ());
}
break;
case class_vector:
{
idx_vector_rep * r = dynamic_cast<idx_vector_rep *> (rep);
const octave_idx_type *data = r->get_data ();
for (octave_idx_type i = 0; i < len; i++) body (data[i]);
}
break;
case class_mask:
{
idx_mask_rep * r = dynamic_cast<idx_mask_rep *> (rep);
const bool *data = r->get_data ();
octave_idx_type ext = r->extent (0);
for (octave_idx_type i = 0; i < ext; i++)
if (data[i]) body (i);
}
break;
default:
assert (false);
break;
}
}
// Generic breakable indexed loop. The loop body should be
// encapsulated in a single functor body. This is equivalent to the
// following loop (but faster, at least for simple inlined bodies):
//
// for (octave_idx_type i = 0; i < idx->length (n); i++)
// if (body (idx(i))) break;
// return i;
//
template <class Functor>
octave_idx_type
bloop (octave_idx_type n, Functor body) const
{
octave_idx_type len = rep->length (n), ret;
switch (rep->idx_class ())
{
case class_colon:
{
octave_idx_type i;
for (i = 0; i < len && body (i); i++) ;
ret = i;
}
break;
case class_range:
{
idx_range_rep * r = dynamic_cast<idx_range_rep *> (rep);
octave_idx_type start = r->get_start (), step = r->get_step ();
octave_idx_type i, j;
if (step == 1)
for (i = start, j = start + len; i < j && body (i); i++) ;
else if (step == -1)
for (i = start, j = start - len; i > j && body (i); i--) ;
else
for (i = 0, j = start; i < len && body (j); i++, j += step) ;
ret = i;
}
break;
case class_scalar:
{
idx_scalar_rep * r = dynamic_cast<idx_scalar_rep *> (rep);
ret = body (r->get_data ()) ? 1 : 0;
}
break;
case class_vector:
{
idx_vector_rep * r = dynamic_cast<idx_vector_rep *> (rep);
const octave_idx_type *data = r->get_data ();
octave_idx_type i;
for (i = 0; i < len && body (data[i]); i++) ;
ret = i;
}
break;
case class_mask:
{
idx_mask_rep * r = dynamic_cast<idx_mask_rep *> (rep);
const bool *data = r->get_data ();
octave_idx_type ext = r->extent (0), j = 0;
for (octave_idx_type i = 0; i < ext; i++)
{
if (data[i])
{
if (body (i))
break;
else
j++;
}
}
ret = j;
}
break;
default:
assert (false);
break;
}
return ret;
}
// Rationale:
// This method is the key to "smart indexing". When indexing cartesian
// arrays, sometimes consecutive index vectors can be reduced into a
// single index. If rows (A) = k and i.maybe_reduce (j) gives k, then
// A(i,j)(:) is equal to A(k)(:).
// If the next index can be reduced, returns true and updates this.
bool maybe_reduce (octave_idx_type n, const idx_vector& j,
octave_idx_type nj);
bool is_cont_range (octave_idx_type n,
octave_idx_type& l, octave_idx_type& u) const;
// Returns the increment for ranges and colon, 0 for scalars and empty
// vectors, 1st difference otherwise.
octave_idx_type increment (void) const;
idx_vector
complement (octave_idx_type n) const;
bool is_permutation (octave_idx_type n) const;
// Returns the inverse permutation. If this is not a permutation on 1:n, the
// result is undefined (but no error unless extent () != n).
idx_vector inverse_permutation (octave_idx_type n) const;
// Copies all the indices to a given array. Not allowed for colons.
void copy_data (octave_idx_type *data) const;
// If the index is a mask, convert it to index vector.
idx_vector unmask (void) const;
// Unconverts the index to a scalar, Range, double array or a mask.
void unconvert (idx_class_type& iclass,
double& scalar, Range& range,
Array<double>& array, Array<bool>& mask) const;
Array<octave_idx_type> as_array (void) const;
// Raw pointer to index array. This is non-const because it may be
// necessary to mutate the index.
const octave_idx_type *raw (void);
bool is_vector (void) const;
// FIXME: these are here for compatibility. They should be removed
// when no longer in use.
octave_idx_type elem (octave_idx_type n) const
{ return (*this) (n); }
bool is_colon_equiv (octave_idx_type n, int) const
{ return is_colon_equiv (n); }
octave_idx_type
freeze (octave_idx_type z_len, const char *tag, bool resize_ok = false);
void sort (bool uniq = false)
{ *this = sorted (uniq); }
octave_idx_type ones_count (void) const;
octave_idx_type max (void) const { return extent (1) - 1; }
private:
idx_base_rep *rep;
};
#endif
|