This file is indexed.

/usr/include/octave-3.8.1/octave/lo-mappers.h is in liboctave-dev 3.8.1-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
/*

Copyright (C) 1996-2013 John W. Eaton
Copyright (C) 2010 VZLU Prague

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#if !defined (octave_lo_mappers_h)
#define octave_lo_mappers_h 1

#include <limits>

#include "oct-cmplx.h"
#include "lo-math.h"

// Double Precision
extern OCTAVE_API double xtrunc (double x);
extern OCTAVE_API double xcopysign (double x, double y);
inline double xceil (double x) { return ceil (x); }
extern OCTAVE_API double xfloor (double x);
inline double arg (double x) { return atan2 (0.0, x); }
inline double conj (double x) { return x; }
inline double fix (double x) { return xtrunc (x); }
inline double imag (double) { return 0.0; }
inline double real (double x) { return x; }
extern OCTAVE_API double xround (double x);
extern OCTAVE_API double xroundb (double x);
extern OCTAVE_API double signum (double x);
extern OCTAVE_API double xlog2 (double x);
extern OCTAVE_API Complex xlog2 (const Complex& x);
extern OCTAVE_API double xlog2 (double x, int& exp);
extern OCTAVE_API Complex xlog2 (const Complex& x, int& exp);
extern OCTAVE_API double xexp2 (double x);

// These are used by the BOOL_OP macros in mx-op-defs.h.
inline bool xisnan (bool) { return false; }
inline bool xisnan (char) { return false; }

#if defined (HAVE_CMATH_ISNAN)
inline bool xisnan (double x)
{ return std::isnan (x); }
#else
extern OCTAVE_API bool xisnan (double x);
#endif
#if defined (HAVE_CMATH_ISFINITE)
inline bool xfinite (double x)
{ return std::isfinite (x); }
#else
extern OCTAVE_API bool xfinite (double x);
#endif
#if defined (HAVE_CMATH_ISINF)
inline bool xisinf (double x)
{ return std::isinf (x); }
#else
extern OCTAVE_API bool xisinf (double x);
#endif

extern OCTAVE_API bool octave_is_NA (double x);
extern OCTAVE_API bool octave_is_NaN_or_NA (double x) GCC_ATTR_DEPRECATED;

// Generic xmin, xmax definitions
template <class T>
inline T xmin (T x, T y)
{
  return x <= y ? x : y;
}

template <class T>
inline T xmax (T x, T y)
{
  return x >= y ? x : y;
}

// This form is favorable. GCC will translate (x <= y ? x : y) without a
// jump, hence the only conditional jump involved will be the first
// (xisnan), infrequent and hence friendly to branch prediction.
inline double
xmin (double x, double y)
{
  return xisnan (y) ? x : (x <= y ? x : y);
}

inline double
xmax (double x, double y)
{
  return xisnan (y) ? x : (x >= y ? x : y);
}

extern OCTAVE_API Complex acos (const Complex& x);
extern OCTAVE_API Complex acosh (const Complex& x);
extern OCTAVE_API Complex asin (const Complex& x);
extern OCTAVE_API Complex asinh (const Complex& x);
extern OCTAVE_API Complex atan (const Complex& x);
extern OCTAVE_API Complex atanh (const Complex& x);

extern OCTAVE_API bool octave_is_NA (const Complex& x);
extern OCTAVE_API bool octave_is_NaN_or_NA (const Complex& x);

extern OCTAVE_API Complex xmin (const Complex& x, const Complex& y);
extern OCTAVE_API Complex xmax (const Complex& x, const Complex& y);

// Single Precision
extern OCTAVE_API float xtrunc (float x);
extern OCTAVE_API float xcopysign (float x, float y);
inline float xceil (float x) { return ceilf (x); }
extern OCTAVE_API float xfloor (float x);
inline float arg (float x) { return atan2f (0.0f, x); }
inline float conj (float x) { return x; }
inline float fix (float x) { return xtrunc (x); }
inline float imag (float) { return 0.0f; }
inline float real (float x) { return x; }
extern OCTAVE_API float xround (float x);
extern OCTAVE_API float xroundb (float x);
extern OCTAVE_API float signum (float x);
extern OCTAVE_API float xlog2 (float x);
extern OCTAVE_API FloatComplex xlog2 (const FloatComplex& x);
extern OCTAVE_API float xlog2 (float x, int& exp);
extern OCTAVE_API FloatComplex xlog2 (const FloatComplex& x, int& exp);
extern OCTAVE_API float xexp2 (float x);

#if defined (HAVE_CMATH_ISNANF)
inline bool xisnan (float x)
{ return std::isnan (x); }
#else
extern OCTAVE_API bool xisnan (float x);
#endif
#if defined (HAVE_CMATH_ISFINITEF)
inline bool xfinite (float x)
{ return std::isfinite (x); }
#else
extern OCTAVE_API bool xfinite (float x);
#endif
#if defined (HAVE_CMATH_ISINFF)
inline bool xisinf (float x)
{ return std::isinf (x); }
#else
extern OCTAVE_API bool xisinf (float x);
#endif

extern OCTAVE_API bool octave_is_NA (float x);
extern OCTAVE_API bool octave_is_NaN_or_NA (float x) GCC_ATTR_DEPRECATED;

inline float
xmin (float x, float y)
{
  return xisnan (y) ? x : (x <= y ? x : y);
}

inline float
xmax (float x, float y)
{
  return xisnan (y) ? x : (x >= y ? x : y);
}

extern OCTAVE_API FloatComplex acos (const FloatComplex& x);
extern OCTAVE_API FloatComplex acosh (const FloatComplex& x);
extern OCTAVE_API FloatComplex asin (const FloatComplex& x);
extern OCTAVE_API FloatComplex asinh (const FloatComplex& x);
extern OCTAVE_API FloatComplex atan (const FloatComplex& x);
extern OCTAVE_API FloatComplex atanh (const FloatComplex& x);

extern OCTAVE_API bool octave_is_NA (const FloatComplex& x);
extern OCTAVE_API bool octave_is_NaN_or_NA (const FloatComplex& x);

extern OCTAVE_API FloatComplex xmin (const FloatComplex& x,
                                     const FloatComplex& y);
extern OCTAVE_API FloatComplex xmax (const FloatComplex& x,
                                     const FloatComplex& y);

// These map reals to Complex.

extern OCTAVE_API Complex rc_acos (double);
extern OCTAVE_API FloatComplex rc_acos (float);
extern OCTAVE_API Complex rc_acosh (double);
extern OCTAVE_API FloatComplex rc_acosh (float);
extern OCTAVE_API Complex rc_asin (double);
extern OCTAVE_API FloatComplex rc_asin (float);
extern OCTAVE_API Complex rc_atanh (double);
extern OCTAVE_API FloatComplex rc_atanh (float);
extern OCTAVE_API Complex rc_log (double);
extern OCTAVE_API FloatComplex rc_log (float);
extern OCTAVE_API Complex rc_log2 (double);
extern OCTAVE_API FloatComplex rc_log2 (float);
extern OCTAVE_API Complex rc_log10 (double);
extern OCTAVE_API FloatComplex rc_log10 (float);
extern OCTAVE_API Complex rc_sqrt (double);
extern OCTAVE_API FloatComplex rc_sqrt (float);

// Some useful tests, that are commonly repeated.
// Test for a finite integer.
inline bool
xisinteger (double x)
{
  return xfinite (x) && x == xround (x);
}

inline bool
xisinteger (float x)
{
  return xfinite (x) && x == xround (x);
}

// Test for negative sign.
extern OCTAVE_API bool xnegative_sign (double x);
extern OCTAVE_API bool xnegative_sign (float x);

// Test for positive sign.
inline bool xpositive_sign (double x) { return ! xnegative_sign (x); }
inline bool xpositive_sign (float x) { return ! xnegative_sign (x); }

// Some old rounding functions.

extern OCTAVE_API octave_idx_type NINTbig (double x);
extern OCTAVE_API octave_idx_type NINTbig (float x);

extern OCTAVE_API int NINT (double x);
extern OCTAVE_API int NINT (float x);

template <typename T>
T
X_NINT (T x)
{
  return (xfinite (x) ? xfloor (x + 0.5) : x);
}

inline OCTAVE_API double D_NINT (double x) { return X_NINT (x); }
inline OCTAVE_API float F_NINT (float x) { return X_NINT (x); }

// Template functions can have either float or double arguments.

template <typename T>
bool
xisnan (const std::complex<T>& x)
{
  return (xisnan (real (x)) || xisnan (imag (x)));
}

template <typename T>
bool
xfinite (const std::complex<T>& x)
{
  return (xfinite (real (x)) && xfinite (imag (x)));
}

template <typename T>
bool
xisinf (const std::complex<T>& x)
{
  return (xisinf (real (x)) || xisinf (imag (x)));
}

template <typename T>
std::complex<T>
fix (const std::complex<T>& x)
{
  return std::complex<T> (fix (real (x)), fix (imag (x)));
}

template <typename T>
std::complex<T>
ceil (const std::complex<T>& x)
{
  return std::complex<T> (xceil (real (x)), xceil (imag (x)));
}

template <typename T>
std::complex<T>
floor (const std::complex<T>& x)
{
  return std::complex<T> (xfloor (real (x)), xfloor (imag (x)));
}

template <typename T>
std::complex<T>
xround (const std::complex<T>& x)
{
  return std::complex<T> (xround (real (x)), xround (imag (x)));
}

template <typename T>
std::complex<T>
xroundb (const std::complex<T>& x)
{
  return std::complex<T> (xroundb (real (x)), xroundb (imag (x)));
}

template <typename T>
std::complex<T>
signum (const std::complex<T>& x)
{
  T tmp = abs (x);

  return tmp == 0 ? 0.0 : x / tmp;
}

template <typename T>
T
xmod (T x, T y)
{
  T retval;

  if (y == 0)
    retval = x;
  else
    {
      T q = x / y;

      T n = xfloor (q);

      if (X_NINT (y) != y)
        {
          if (X_NINT (q) == q)
            n = q;
          else
            {
              if (x >= -1 && x <= 1)
                {
                  if (std::abs (q - X_NINT (q))
                      < std::numeric_limits<T>::epsilon ())
                    n = X_NINT (q);
                }
              else
                {
                  if (std::abs ((q - X_NINT (q))/ X_NINT (q))
                      < std::numeric_limits<T>::epsilon ())
                    n = X_NINT (q);
                }
            }
        }

      // Prevent use of extra precision.
      volatile T tmp = y * n;

      retval = x - tmp;
    }

  if (x != y && y != 0 && retval != 0)
    retval = xcopysign (retval, y);

  return retval;
}

template <typename T>
T
xrem (T x, T y)
{
  T retval;

  if (y == 0)
    retval = x;
  else
    {
      T q = x / y;

      T n = xtrunc (q);

      if (X_NINT (y) != y)
        {
          if (X_NINT (q) == q)
            n = q;
          else
            {
              if (x >= -1 && x <= 1)
                {
                  if (std::abs (q - X_NINT (q))
                      < std::numeric_limits<T>::epsilon ())
                    n = X_NINT (q);
                }
              else
                {
                  if (std::abs ((q - X_NINT (q))/ X_NINT (q))
                      < std::numeric_limits<T>::epsilon ())
                    n = X_NINT (q);
                }
            }
        }

      // Prevent use of extra precision.
      volatile T tmp = y * n;

      retval = x - tmp;
    }

  if (x != y && y != 0 && retval != 0)
    retval = xcopysign (retval, x);

  return retval;
}

template <typename T>
T
xsignbit (T x)
{
  return signbit (x);
}

#endif