/usr/include/octave-3.8.1/octave/lo-mappers.h is in liboctave-dev 3.8.1-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 | /*
Copyright (C) 1996-2013 John W. Eaton
Copyright (C) 2010 VZLU Prague
This file is part of Octave.
Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING. If not, see
<http://www.gnu.org/licenses/>.
*/
#if !defined (octave_lo_mappers_h)
#define octave_lo_mappers_h 1
#include <limits>
#include "oct-cmplx.h"
#include "lo-math.h"
// Double Precision
extern OCTAVE_API double xtrunc (double x);
extern OCTAVE_API double xcopysign (double x, double y);
inline double xceil (double x) { return ceil (x); }
extern OCTAVE_API double xfloor (double x);
inline double arg (double x) { return atan2 (0.0, x); }
inline double conj (double x) { return x; }
inline double fix (double x) { return xtrunc (x); }
inline double imag (double) { return 0.0; }
inline double real (double x) { return x; }
extern OCTAVE_API double xround (double x);
extern OCTAVE_API double xroundb (double x);
extern OCTAVE_API double signum (double x);
extern OCTAVE_API double xlog2 (double x);
extern OCTAVE_API Complex xlog2 (const Complex& x);
extern OCTAVE_API double xlog2 (double x, int& exp);
extern OCTAVE_API Complex xlog2 (const Complex& x, int& exp);
extern OCTAVE_API double xexp2 (double x);
// These are used by the BOOL_OP macros in mx-op-defs.h.
inline bool xisnan (bool) { return false; }
inline bool xisnan (char) { return false; }
#if defined (HAVE_CMATH_ISNAN)
inline bool xisnan (double x)
{ return std::isnan (x); }
#else
extern OCTAVE_API bool xisnan (double x);
#endif
#if defined (HAVE_CMATH_ISFINITE)
inline bool xfinite (double x)
{ return std::isfinite (x); }
#else
extern OCTAVE_API bool xfinite (double x);
#endif
#if defined (HAVE_CMATH_ISINF)
inline bool xisinf (double x)
{ return std::isinf (x); }
#else
extern OCTAVE_API bool xisinf (double x);
#endif
extern OCTAVE_API bool octave_is_NA (double x);
extern OCTAVE_API bool octave_is_NaN_or_NA (double x) GCC_ATTR_DEPRECATED;
// Generic xmin, xmax definitions
template <class T>
inline T xmin (T x, T y)
{
return x <= y ? x : y;
}
template <class T>
inline T xmax (T x, T y)
{
return x >= y ? x : y;
}
// This form is favorable. GCC will translate (x <= y ? x : y) without a
// jump, hence the only conditional jump involved will be the first
// (xisnan), infrequent and hence friendly to branch prediction.
inline double
xmin (double x, double y)
{
return xisnan (y) ? x : (x <= y ? x : y);
}
inline double
xmax (double x, double y)
{
return xisnan (y) ? x : (x >= y ? x : y);
}
extern OCTAVE_API Complex acos (const Complex& x);
extern OCTAVE_API Complex acosh (const Complex& x);
extern OCTAVE_API Complex asin (const Complex& x);
extern OCTAVE_API Complex asinh (const Complex& x);
extern OCTAVE_API Complex atan (const Complex& x);
extern OCTAVE_API Complex atanh (const Complex& x);
extern OCTAVE_API bool octave_is_NA (const Complex& x);
extern OCTAVE_API bool octave_is_NaN_or_NA (const Complex& x);
extern OCTAVE_API Complex xmin (const Complex& x, const Complex& y);
extern OCTAVE_API Complex xmax (const Complex& x, const Complex& y);
// Single Precision
extern OCTAVE_API float xtrunc (float x);
extern OCTAVE_API float xcopysign (float x, float y);
inline float xceil (float x) { return ceilf (x); }
extern OCTAVE_API float xfloor (float x);
inline float arg (float x) { return atan2f (0.0f, x); }
inline float conj (float x) { return x; }
inline float fix (float x) { return xtrunc (x); }
inline float imag (float) { return 0.0f; }
inline float real (float x) { return x; }
extern OCTAVE_API float xround (float x);
extern OCTAVE_API float xroundb (float x);
extern OCTAVE_API float signum (float x);
extern OCTAVE_API float xlog2 (float x);
extern OCTAVE_API FloatComplex xlog2 (const FloatComplex& x);
extern OCTAVE_API float xlog2 (float x, int& exp);
extern OCTAVE_API FloatComplex xlog2 (const FloatComplex& x, int& exp);
extern OCTAVE_API float xexp2 (float x);
#if defined (HAVE_CMATH_ISNANF)
inline bool xisnan (float x)
{ return std::isnan (x); }
#else
extern OCTAVE_API bool xisnan (float x);
#endif
#if defined (HAVE_CMATH_ISFINITEF)
inline bool xfinite (float x)
{ return std::isfinite (x); }
#else
extern OCTAVE_API bool xfinite (float x);
#endif
#if defined (HAVE_CMATH_ISINFF)
inline bool xisinf (float x)
{ return std::isinf (x); }
#else
extern OCTAVE_API bool xisinf (float x);
#endif
extern OCTAVE_API bool octave_is_NA (float x);
extern OCTAVE_API bool octave_is_NaN_or_NA (float x) GCC_ATTR_DEPRECATED;
inline float
xmin (float x, float y)
{
return xisnan (y) ? x : (x <= y ? x : y);
}
inline float
xmax (float x, float y)
{
return xisnan (y) ? x : (x >= y ? x : y);
}
extern OCTAVE_API FloatComplex acos (const FloatComplex& x);
extern OCTAVE_API FloatComplex acosh (const FloatComplex& x);
extern OCTAVE_API FloatComplex asin (const FloatComplex& x);
extern OCTAVE_API FloatComplex asinh (const FloatComplex& x);
extern OCTAVE_API FloatComplex atan (const FloatComplex& x);
extern OCTAVE_API FloatComplex atanh (const FloatComplex& x);
extern OCTAVE_API bool octave_is_NA (const FloatComplex& x);
extern OCTAVE_API bool octave_is_NaN_or_NA (const FloatComplex& x);
extern OCTAVE_API FloatComplex xmin (const FloatComplex& x,
const FloatComplex& y);
extern OCTAVE_API FloatComplex xmax (const FloatComplex& x,
const FloatComplex& y);
// These map reals to Complex.
extern OCTAVE_API Complex rc_acos (double);
extern OCTAVE_API FloatComplex rc_acos (float);
extern OCTAVE_API Complex rc_acosh (double);
extern OCTAVE_API FloatComplex rc_acosh (float);
extern OCTAVE_API Complex rc_asin (double);
extern OCTAVE_API FloatComplex rc_asin (float);
extern OCTAVE_API Complex rc_atanh (double);
extern OCTAVE_API FloatComplex rc_atanh (float);
extern OCTAVE_API Complex rc_log (double);
extern OCTAVE_API FloatComplex rc_log (float);
extern OCTAVE_API Complex rc_log2 (double);
extern OCTAVE_API FloatComplex rc_log2 (float);
extern OCTAVE_API Complex rc_log10 (double);
extern OCTAVE_API FloatComplex rc_log10 (float);
extern OCTAVE_API Complex rc_sqrt (double);
extern OCTAVE_API FloatComplex rc_sqrt (float);
// Some useful tests, that are commonly repeated.
// Test for a finite integer.
inline bool
xisinteger (double x)
{
return xfinite (x) && x == xround (x);
}
inline bool
xisinteger (float x)
{
return xfinite (x) && x == xround (x);
}
// Test for negative sign.
extern OCTAVE_API bool xnegative_sign (double x);
extern OCTAVE_API bool xnegative_sign (float x);
// Test for positive sign.
inline bool xpositive_sign (double x) { return ! xnegative_sign (x); }
inline bool xpositive_sign (float x) { return ! xnegative_sign (x); }
// Some old rounding functions.
extern OCTAVE_API octave_idx_type NINTbig (double x);
extern OCTAVE_API octave_idx_type NINTbig (float x);
extern OCTAVE_API int NINT (double x);
extern OCTAVE_API int NINT (float x);
template <typename T>
T
X_NINT (T x)
{
return (xfinite (x) ? xfloor (x + 0.5) : x);
}
inline OCTAVE_API double D_NINT (double x) { return X_NINT (x); }
inline OCTAVE_API float F_NINT (float x) { return X_NINT (x); }
// Template functions can have either float or double arguments.
template <typename T>
bool
xisnan (const std::complex<T>& x)
{
return (xisnan (real (x)) || xisnan (imag (x)));
}
template <typename T>
bool
xfinite (const std::complex<T>& x)
{
return (xfinite (real (x)) && xfinite (imag (x)));
}
template <typename T>
bool
xisinf (const std::complex<T>& x)
{
return (xisinf (real (x)) || xisinf (imag (x)));
}
template <typename T>
std::complex<T>
fix (const std::complex<T>& x)
{
return std::complex<T> (fix (real (x)), fix (imag (x)));
}
template <typename T>
std::complex<T>
ceil (const std::complex<T>& x)
{
return std::complex<T> (xceil (real (x)), xceil (imag (x)));
}
template <typename T>
std::complex<T>
floor (const std::complex<T>& x)
{
return std::complex<T> (xfloor (real (x)), xfloor (imag (x)));
}
template <typename T>
std::complex<T>
xround (const std::complex<T>& x)
{
return std::complex<T> (xround (real (x)), xround (imag (x)));
}
template <typename T>
std::complex<T>
xroundb (const std::complex<T>& x)
{
return std::complex<T> (xroundb (real (x)), xroundb (imag (x)));
}
template <typename T>
std::complex<T>
signum (const std::complex<T>& x)
{
T tmp = abs (x);
return tmp == 0 ? 0.0 : x / tmp;
}
template <typename T>
T
xmod (T x, T y)
{
T retval;
if (y == 0)
retval = x;
else
{
T q = x / y;
T n = xfloor (q);
if (X_NINT (y) != y)
{
if (X_NINT (q) == q)
n = q;
else
{
if (x >= -1 && x <= 1)
{
if (std::abs (q - X_NINT (q))
< std::numeric_limits<T>::epsilon ())
n = X_NINT (q);
}
else
{
if (std::abs ((q - X_NINT (q))/ X_NINT (q))
< std::numeric_limits<T>::epsilon ())
n = X_NINT (q);
}
}
}
// Prevent use of extra precision.
volatile T tmp = y * n;
retval = x - tmp;
}
if (x != y && y != 0 && retval != 0)
retval = xcopysign (retval, y);
return retval;
}
template <typename T>
T
xrem (T x, T y)
{
T retval;
if (y == 0)
retval = x;
else
{
T q = x / y;
T n = xtrunc (q);
if (X_NINT (y) != y)
{
if (X_NINT (q) == q)
n = q;
else
{
if (x >= -1 && x <= 1)
{
if (std::abs (q - X_NINT (q))
< std::numeric_limits<T>::epsilon ())
n = X_NINT (q);
}
else
{
if (std::abs ((q - X_NINT (q))/ X_NINT (q))
< std::numeric_limits<T>::epsilon ())
n = X_NINT (q);
}
}
}
// Prevent use of extra precision.
volatile T tmp = y * n;
retval = x - tmp;
}
if (x != y && y != 0 && retval != 0)
retval = xcopysign (retval, x);
return retval;
}
template <typename T>
T
xsignbit (T x)
{
return signbit (x);
}
#endif
|