This file is indexed.

/usr/include/octave-3.8.1/octave/oct-mem.h is in liboctave-dev 3.8.1-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
/*

Copyright (C) 2009-2013 VZLU Prague

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#if !defined (octave_oct_mem_h)
#define octave_oct_mem_h 1

#include <cstddef>
#include <cstring>
#include <algorithm>

#include "oct-cmplx.h"
#include "oct-inttypes.h"

// NOTE: These functions are used to optimize stuff where performance is a
// priority. They assume that the std::complex and octave_int can be
// manipulated as plain memory, an assumption that is always true in practice
// but not theoretically guaranteed by the C++ standard. In the future, C++ may
// provide a better way to accomplish these tasks.

inline size_t safe_size_comp (size_t n, size_t size)
{
  if (n > static_cast<size_t> (-1) / size)
    throw std::bad_alloc ();
  return n * size;
}

// Unaliased copy. This boils down to memcpy, even for octave_int and
// complex types.

template <class T>
inline void copy_or_memcpy (size_t n, const T *src, T *dest)
{ std::copy (src, src + n, dest); }

#define DEFINE_POD_UCOPY(T) \
inline void copy_or_memcpy (size_t n, const T *src, T *dest) \
{ std::memcpy (dest, src, n * sizeof (T)); }

DEFINE_POD_UCOPY (double)
DEFINE_POD_UCOPY (float)
DEFINE_POD_UCOPY (char)
DEFINE_POD_UCOPY (short)
DEFINE_POD_UCOPY (int)
DEFINE_POD_UCOPY (long)
DEFINE_POD_UCOPY (unsigned char)
DEFINE_POD_UCOPY (unsigned short)
DEFINE_POD_UCOPY (unsigned int)
DEFINE_POD_UCOPY (unsigned long)

DEFINE_POD_UCOPY (Complex)
DEFINE_POD_UCOPY (FloatComplex)

template <class T>
DEFINE_POD_UCOPY (octave_int<T>)

// Fill by value, with a check for zero. This boils down to memset if value is
// a POD zero.
template <class T>
inline void fill_or_memset (size_t n, const T& value, T *dest)
{ std::fill_n (dest, n, value); }

template <class T>
inline bool helper_is_zero_mem (const T& value)
{
  // get integer type of the same size.
  typedef typename query_integer_type<sizeof (T), false>::type IT;
  return *(reinterpret_cast<const IT *>(&value)) == 0;
}

template <class T>
inline bool helper_is_zero_mem (const std::complex<T>& value)
{
  return (helper_is_zero_mem (value.real ())
          && helper_is_zero_mem (value.imag ()));
}

template <class T>
inline bool helper_is_zero_mem (const octave_int<T>& value)
{ return value.value () == T (); }

#define DEFINE_POD_FILL(T) \
inline void fill_or_memset (size_t n, const T& value, T *dest) \
{ \
  if (helper_is_zero_mem (value)) \
    std::memset (dest, 0, n * sizeof (T)); \
  else \
    std::fill_n (dest, n, value); \
}

DEFINE_POD_FILL (double)
DEFINE_POD_FILL (float)
DEFINE_POD_FILL (char)
DEFINE_POD_FILL (short)
DEFINE_POD_FILL (int)
DEFINE_POD_FILL (long)
DEFINE_POD_FILL (unsigned char)
DEFINE_POD_FILL (unsigned short)
DEFINE_POD_FILL (unsigned int)
DEFINE_POD_FILL (unsigned long)

DEFINE_POD_FILL (Complex)
DEFINE_POD_FILL (FloatComplex)

template <class T>
DEFINE_POD_FILL (octave_int<T>)

// Uninitialized allocation.
// Will not initialize memory for complex and octave_int.
// Memory allocated by octave_new should be freed by octave_delete.
template <class T>
inline T *no_ctor_new (size_t n)
{
  // Some systems let us allocate > 2GB memory even though size_t, which is
  // either buggy or completely cuckoo, so let's check here to stay safe.
  safe_size_comp (n, sizeof (T));
  return new T [n];
}
template <class T>
inline void no_ctor_delete (T *ptr)
{ delete [] ptr; }

#define DEFINE_POD_NEW_DELETE(T) \
template <> \
inline T *no_ctor_new<T > (size_t n) \
{ return reinterpret_cast<T *> (new char [safe_size_comp (n, sizeof (T))]); } \
template <> \
inline void no_ctor_delete<T > (T *ptr) \
{ delete [] reinterpret_cast<char *> (ptr); }

DEFINE_POD_NEW_DELETE (Complex)
DEFINE_POD_NEW_DELETE (FloatComplex)

DEFINE_POD_NEW_DELETE (octave_int8)
DEFINE_POD_NEW_DELETE (octave_int16)
DEFINE_POD_NEW_DELETE (octave_int32)
DEFINE_POD_NEW_DELETE (octave_int64)
DEFINE_POD_NEW_DELETE (octave_uint8)
DEFINE_POD_NEW_DELETE (octave_uint16)
DEFINE_POD_NEW_DELETE (octave_uint32)
DEFINE_POD_NEW_DELETE (octave_uint64)

#endif /* octave_oct_mem_h */