/usr/include/octave-3.8.1/octave/oct-mem.h is in liboctave-dev 3.8.1-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 | /*
Copyright (C) 2009-2013 VZLU Prague
This file is part of Octave.
Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING. If not, see
<http://www.gnu.org/licenses/>.
*/
#if !defined (octave_oct_mem_h)
#define octave_oct_mem_h 1
#include <cstddef>
#include <cstring>
#include <algorithm>
#include "oct-cmplx.h"
#include "oct-inttypes.h"
// NOTE: These functions are used to optimize stuff where performance is a
// priority. They assume that the std::complex and octave_int can be
// manipulated as plain memory, an assumption that is always true in practice
// but not theoretically guaranteed by the C++ standard. In the future, C++ may
// provide a better way to accomplish these tasks.
inline size_t safe_size_comp (size_t n, size_t size)
{
if (n > static_cast<size_t> (-1) / size)
throw std::bad_alloc ();
return n * size;
}
// Unaliased copy. This boils down to memcpy, even for octave_int and
// complex types.
template <class T>
inline void copy_or_memcpy (size_t n, const T *src, T *dest)
{ std::copy (src, src + n, dest); }
#define DEFINE_POD_UCOPY(T) \
inline void copy_or_memcpy (size_t n, const T *src, T *dest) \
{ std::memcpy (dest, src, n * sizeof (T)); }
DEFINE_POD_UCOPY (double)
DEFINE_POD_UCOPY (float)
DEFINE_POD_UCOPY (char)
DEFINE_POD_UCOPY (short)
DEFINE_POD_UCOPY (int)
DEFINE_POD_UCOPY (long)
DEFINE_POD_UCOPY (unsigned char)
DEFINE_POD_UCOPY (unsigned short)
DEFINE_POD_UCOPY (unsigned int)
DEFINE_POD_UCOPY (unsigned long)
DEFINE_POD_UCOPY (Complex)
DEFINE_POD_UCOPY (FloatComplex)
template <class T>
DEFINE_POD_UCOPY (octave_int<T>)
// Fill by value, with a check for zero. This boils down to memset if value is
// a POD zero.
template <class T>
inline void fill_or_memset (size_t n, const T& value, T *dest)
{ std::fill_n (dest, n, value); }
template <class T>
inline bool helper_is_zero_mem (const T& value)
{
// get integer type of the same size.
typedef typename query_integer_type<sizeof (T), false>::type IT;
return *(reinterpret_cast<const IT *>(&value)) == 0;
}
template <class T>
inline bool helper_is_zero_mem (const std::complex<T>& value)
{
return (helper_is_zero_mem (value.real ())
&& helper_is_zero_mem (value.imag ()));
}
template <class T>
inline bool helper_is_zero_mem (const octave_int<T>& value)
{ return value.value () == T (); }
#define DEFINE_POD_FILL(T) \
inline void fill_or_memset (size_t n, const T& value, T *dest) \
{ \
if (helper_is_zero_mem (value)) \
std::memset (dest, 0, n * sizeof (T)); \
else \
std::fill_n (dest, n, value); \
}
DEFINE_POD_FILL (double)
DEFINE_POD_FILL (float)
DEFINE_POD_FILL (char)
DEFINE_POD_FILL (short)
DEFINE_POD_FILL (int)
DEFINE_POD_FILL (long)
DEFINE_POD_FILL (unsigned char)
DEFINE_POD_FILL (unsigned short)
DEFINE_POD_FILL (unsigned int)
DEFINE_POD_FILL (unsigned long)
DEFINE_POD_FILL (Complex)
DEFINE_POD_FILL (FloatComplex)
template <class T>
DEFINE_POD_FILL (octave_int<T>)
// Uninitialized allocation.
// Will not initialize memory for complex and octave_int.
// Memory allocated by octave_new should be freed by octave_delete.
template <class T>
inline T *no_ctor_new (size_t n)
{
// Some systems let us allocate > 2GB memory even though size_t, which is
// either buggy or completely cuckoo, so let's check here to stay safe.
safe_size_comp (n, sizeof (T));
return new T [n];
}
template <class T>
inline void no_ctor_delete (T *ptr)
{ delete [] ptr; }
#define DEFINE_POD_NEW_DELETE(T) \
template <> \
inline T *no_ctor_new<T > (size_t n) \
{ return reinterpret_cast<T *> (new char [safe_size_comp (n, sizeof (T))]); } \
template <> \
inline void no_ctor_delete<T > (T *ptr) \
{ delete [] reinterpret_cast<char *> (ptr); }
DEFINE_POD_NEW_DELETE (Complex)
DEFINE_POD_NEW_DELETE (FloatComplex)
DEFINE_POD_NEW_DELETE (octave_int8)
DEFINE_POD_NEW_DELETE (octave_int16)
DEFINE_POD_NEW_DELETE (octave_int32)
DEFINE_POD_NEW_DELETE (octave_int64)
DEFINE_POD_NEW_DELETE (octave_uint8)
DEFINE_POD_NEW_DELETE (octave_uint16)
DEFINE_POD_NEW_DELETE (octave_uint32)
DEFINE_POD_NEW_DELETE (octave_uint64)
#endif /* octave_oct_mem_h */
|