/usr/include/octave-3.8.1/octave/ov-complex.h is in liboctave-dev 3.8.1-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 | /*
Copyright (C) 1996-2013 John W. Eaton
This file is part of Octave.
Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING. If not, see
<http://www.gnu.org/licenses/>.
*/
#if !defined (octave_ov_complex_h)
#define octave_ov_complex_h 1
#include <cstdlib>
#include <iosfwd>
#include <string>
#include "lo-ieee.h"
#include "mx-base.h"
#include "oct-alloc.h"
#include "str-vec.h"
#include "gripes.h"
#include "error.h"
#include "ov-base.h"
#include "ov-cx-mat.h"
#include "ov-base-scalar.h"
#include "ov-typeinfo.h"
class octave_value_list;
class tree_walker;
// Complex scalar values.
class
OCTINTERP_API
octave_complex : public octave_base_scalar<Complex>
{
public:
octave_complex (void)
: octave_base_scalar<Complex> () { }
octave_complex (const Complex& c)
: octave_base_scalar<Complex> (c) { }
octave_complex (const octave_complex& c)
: octave_base_scalar<Complex> (c) { }
~octave_complex (void) { }
octave_base_value *clone (void) const { return new octave_complex (*this); }
// We return an octave_complex_matrix object here instead of an
// octave_complex object so that in expressions like A(2,2,2) = 2
// (for A previously undefined), A will be empty instead of a 1x1
// object.
octave_base_value *empty_clone (void) const
{ return new octave_complex_matrix (); }
type_conv_info numeric_demotion_function (void) const;
octave_base_value *try_narrowing_conversion (void);
octave_value do_index_op (const octave_value_list& idx,
bool resize_ok = false);
// Use this to give a more specific error message
idx_vector index_vector (void) const
{
error ("attempted to use a complex scalar as an index\n"
" (forgot to initialize i or j?)");
return idx_vector ();
}
octave_value any (int = 0) const
{
return (scalar != Complex (0, 0)
&& ! (lo_ieee_isnan (std::real (scalar))
|| lo_ieee_isnan (std::imag (scalar))));
}
builtin_type_t builtin_type (void) const { return btyp_complex; }
bool is_complex_scalar (void) const { return true; }
bool is_complex_type (void) const { return true; }
bool is_double_type (void) const { return true; }
bool is_float_type (void) const { return true; }
double double_value (bool = false) const;
float float_value (bool = false) const;
double scalar_value (bool frc_str_conv = false) const
{ return double_value (frc_str_conv); }
float float_scalar_value (bool frc_str_conv = false) const
{ return float_value (frc_str_conv); }
Matrix matrix_value (bool = false) const;
FloatMatrix float_matrix_value (bool = false) const;
NDArray array_value (bool = false) const;
FloatNDArray float_array_value (bool = false) const;
SparseMatrix sparse_matrix_value (bool = false) const
{ return SparseMatrix (matrix_value ()); }
SparseComplexMatrix sparse_complex_matrix_value (bool = false) const
{ return SparseComplexMatrix (complex_matrix_value ()); }
octave_value resize (const dim_vector& dv, bool fill = false) const;
Complex complex_value (bool = false) const;
FloatComplex float_complex_value (bool = false) const;
ComplexMatrix complex_matrix_value (bool = false) const;
FloatComplexMatrix float_complex_matrix_value (bool = false) const;
ComplexNDArray complex_array_value (bool = false) const;
FloatComplexNDArray float_complex_array_value (bool = false) const;
bool bool_value (bool warn = false) const
{
if (xisnan (scalar))
gripe_nan_to_logical_conversion ();
else if (warn && scalar != 0.0 && scalar != 1.0)
gripe_logical_conversion ();
return scalar != 0.0;
}
boolNDArray bool_array_value (bool warn = false) const
{
if (xisnan (scalar))
gripe_nan_to_logical_conversion ();
else if (warn && scalar != 0.0 && scalar != 1.0)
gripe_logical_conversion ();
return boolNDArray (dim_vector (1, 1), scalar != 0.0);
}
octave_value diag (octave_idx_type m, octave_idx_type n) const;
void increment (void) { scalar += 1.0; }
void decrement (void) { scalar -= 1.0; }
bool save_ascii (std::ostream& os);
bool load_ascii (std::istream& is);
bool save_binary (std::ostream& os, bool& save_as_floats);
bool load_binary (std::istream& is, bool swap,
oct_mach_info::float_format fmt);
#if defined (HAVE_HDF5)
bool save_hdf5 (hid_t loc_id, const char *name, bool save_as_floats);
bool load_hdf5 (hid_t loc_id, const char *name);
#endif
int write (octave_stream& os, int block_size,
oct_data_conv::data_type output_type, int skip,
oct_mach_info::float_format flt_fmt) const
{
// Yes, for compatibility, we drop the imaginary part here.
return os.write (array_value (true), block_size, output_type,
skip, flt_fmt);
}
mxArray *as_mxArray (void) const;
octave_value map (unary_mapper_t umap) const;
private:
DECLARE_OCTAVE_ALLOCATOR
DECLARE_OV_TYPEID_FUNCTIONS_AND_DATA
};
typedef octave_complex octave_complex_scalar;
#endif
|