/usr/include/octave-3.8.1/octave/sparse-dmsolve.cc is in liboctave-dev 3.8.1-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 | /*
Copyright (C) 2006-2013 David Bateman
This file is part of Octave.
Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING. If not, see
<http://www.gnu.org/licenses/>.
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <vector>
#include "MArray.h"
#include "MSparse.h"
#include "SparseQR.h"
#include "SparseCmplxQR.h"
#include "MatrixType.h"
#include "oct-sort.h"
#include "oct-locbuf.h"
#include "oct-inttypes.h"
template <class T>
static MSparse<T>
dmsolve_extract (const MSparse<T> &A, const octave_idx_type *Pinv,
const octave_idx_type *Q, octave_idx_type rst,
octave_idx_type rend, octave_idx_type cst,
octave_idx_type cend, octave_idx_type maxnz = -1,
bool lazy = false)
{
octave_idx_type nr = rend - rst, nc = cend - cst;
maxnz = (maxnz < 0 ? A.nnz () : maxnz);
octave_idx_type nz;
// Cast to uint64 to handle overflow in this multiplication
if (octave_uint64 (nr)*octave_uint64 (nc) < octave_uint64 (maxnz))
nz = nr*nc;
else
nz = maxnz;
MSparse<T> B (nr, nc, (nz < maxnz ? nz : maxnz));
// Some sparse functions can support lazy indexing (where elements
// in the row are in no particular order), even though octave in
// general can't. For those functions that can using it is a big
// win here in terms of speed.
if (lazy)
{
nz = 0;
for (octave_idx_type j = cst ; j < cend ; j++)
{
octave_idx_type qq = (Q ? Q[j] : j);
B.xcidx (j - cst) = nz;
for (octave_idx_type p = A.cidx (qq) ; p < A.cidx (qq+1) ; p++)
{
octave_quit ();
octave_idx_type r = (Pinv ? Pinv[A.ridx (p)] : A.ridx (p));
if (r >= rst && r < rend)
{
B.xdata (nz) = A.data (p);
B.xridx (nz++) = r - rst ;
}
}
}
B.xcidx (cend - cst) = nz ;
}
else
{
OCTAVE_LOCAL_BUFFER (T, X, rend - rst);
octave_sort<octave_idx_type> sort;
octave_idx_type *ri = B.xridx ();
nz = 0;
for (octave_idx_type j = cst ; j < cend ; j++)
{
octave_idx_type qq = (Q ? Q[j] : j);
B.xcidx (j - cst) = nz;
for (octave_idx_type p = A.cidx (qq) ; p < A.cidx (qq+1) ; p++)
{
octave_quit ();
octave_idx_type r = (Pinv ? Pinv[A.ridx (p)] : A.ridx (p));
if (r >= rst && r < rend)
{
X[r-rst] = A.data (p);
B.xridx (nz++) = r - rst ;
}
}
sort.sort (ri + B.xcidx (j - cst), nz - B.xcidx (j - cst));
for (octave_idx_type p = B.cidx (j - cst); p < nz; p++)
B.xdata (p) = X[B.xridx (p)];
}
B.xcidx (cend - cst) = nz ;
}
return B;
}
#if !defined (CXX_NEW_FRIEND_TEMPLATE_DECL)
static MSparse<double>
dmsolve_extract (const MSparse<double> &A, const octave_idx_type *Pinv,
const octave_idx_type *Q, octave_idx_type rst,
octave_idx_type rend, octave_idx_type cst,
octave_idx_type cend, octave_idx_type maxnz,
bool lazy);
static MSparse<Complex>
dmsolve_extract (const MSparse<Complex> &A, const octave_idx_type *Pinv,
const octave_idx_type *Q, octave_idx_type rst,
octave_idx_type rend, octave_idx_type cst,
octave_idx_type cend, octave_idx_type maxnz,
bool lazy);
#endif
template <class T>
static MArray<T>
dmsolve_extract (const MArray<T> &m, const octave_idx_type *,
const octave_idx_type *, octave_idx_type r1,
octave_idx_type r2, octave_idx_type c1,
octave_idx_type c2)
{
r2 -= 1;
c2 -= 1;
if (r1 > r2) { std::swap (r1, r2); }
if (c1 > c2) { std::swap (c1, c2); }
octave_idx_type new_r = r2 - r1 + 1;
octave_idx_type new_c = c2 - c1 + 1;
MArray<T> result (dim_vector (new_r, new_c));
for (octave_idx_type j = 0; j < new_c; j++)
for (octave_idx_type i = 0; i < new_r; i++)
result.xelem (i, j) = m.elem (r1+i, c1+j);
return result;
}
#if !defined (CXX_NEW_FRIEND_TEMPLATE_DECL)
static MArray<double>
dmsolve_extract (const MArray<double> &m, const octave_idx_type *,
const octave_idx_type *, octave_idx_type r1,
octave_idx_type r2, octave_idx_type c1,
octave_idx_type c2)
static MArray<Complex>
dmsolve_extract (const MArray<Complex> &m, const octave_idx_type *,
const octave_idx_type *, octave_idx_type r1,
octave_idx_type r2, octave_idx_type c1,
octave_idx_type c2)
#endif
template <class T>
static void
dmsolve_insert (MArray<T> &a, const MArray<T> &b, const octave_idx_type *Q,
octave_idx_type r, octave_idx_type c)
{
T *ax = a.fortran_vec ();
const T *bx = b.fortran_vec ();
octave_idx_type anr = a.rows ();
octave_idx_type nr = b.rows ();
octave_idx_type nc = b.cols ();
for (octave_idx_type j = 0; j < nc; j++)
{
octave_idx_type aoff = (c + j) * anr;
octave_idx_type boff = j * nr;
for (octave_idx_type i = 0; i < nr; i++)
{
octave_quit ();
ax[Q[r + i] + aoff] = bx[i + boff];
}
}
}
#if !defined (CXX_NEW_FRIEND_TEMPLATE_DECL)
static void
dmsolve_insert (MArray<double> &a, const MArray<double> &b,
const octave_idx_type *Q, octave_idx_type r, octave_idx_type c);
static void
dmsolve_insert (MArray<Complex> &a, const MArray<Complex> &b,
const octave_idx_type *Q, octave_idx_type r, octave_idx_type c);
#endif
template <class T>
static void
dmsolve_insert (MSparse<T> &a, const MSparse<T> &b, const octave_idx_type *Q,
octave_idx_type r, octave_idx_type c)
{
octave_idx_type b_rows = b.rows ();
octave_idx_type b_cols = b.cols ();
octave_idx_type nr = a.rows ();
octave_idx_type nc = a.cols ();
OCTAVE_LOCAL_BUFFER (octave_idx_type, Qinv, nr);
for (octave_idx_type i = 0; i < nr; i++)
Qinv[Q[i]] = i;
// First count the number of elements in the final array
octave_idx_type nel = a.xcidx (c) + b.nnz ();
if (c + b_cols < nc)
nel += a.xcidx (nc) - a.xcidx (c + b_cols);
for (octave_idx_type i = c; i < c + b_cols; i++)
for (octave_idx_type j = a.xcidx (i); j < a.xcidx (i+1); j++)
if (Qinv[a.xridx (j)] < r || Qinv[a.xridx (j)] >= r + b_rows)
nel++;
OCTAVE_LOCAL_BUFFER (T, X, nr);
octave_sort<octave_idx_type> sort;
MSparse<T> tmp (a);
a = MSparse<T> (nr, nc, nel);
octave_idx_type *ri = a.xridx ();
for (octave_idx_type i = 0; i < tmp.cidx (c); i++)
{
a.xdata (i) = tmp.xdata (i);
a.xridx (i) = tmp.xridx (i);
}
for (octave_idx_type i = 0; i < c + 1; i++)
a.xcidx (i) = tmp.xcidx (i);
octave_idx_type ii = a.xcidx (c);
for (octave_idx_type i = c; i < c + b_cols; i++)
{
octave_quit ();
for (octave_idx_type j = tmp.xcidx (i); j < tmp.xcidx (i+1); j++)
if (Qinv[tmp.xridx (j)] < r || Qinv[tmp.xridx (j)] >= r + b_rows)
{
X[tmp.xridx (j)] = tmp.xdata (j);
a.xridx (ii++) = tmp.xridx (j);
}
octave_quit ();
for (octave_idx_type j = b.cidx (i-c); j < b.cidx (i-c+1); j++)
{
X[Q[r + b.ridx (j)]] = b.data (j);
a.xridx (ii++) = Q[r + b.ridx (j)];
}
sort.sort (ri + a.xcidx (i), ii - a.xcidx (i));
for (octave_idx_type p = a.xcidx (i); p < ii; p++)
a.xdata (p) = X[a.xridx (p)];
a.xcidx (i+1) = ii;
}
for (octave_idx_type i = c + b_cols; i < nc; i++)
{
for (octave_idx_type j = tmp.xcidx (i); j < tmp.cidx (i+1); j++)
{
a.xdata (ii) = tmp.xdata (j);
a.xridx (ii++) = tmp.xridx (j);
}
a.xcidx (i+1) = ii;
}
}
#if !defined (CXX_NEW_FRIEND_TEMPLATE_DECL)
static void
dmsolve_insert (MSparse<double> &a, const SparseMatrix &b,
const octave_idx_type *Q, octave_idx_type r, octave_idx_type c);
static void
dmsolve_insert (MSparse<Complex> &a, const MSparse<Complex> &b,
const octave_idx_type *Q, octave_idx_type r, octave_idx_type c);
#endif
template <class T, class RT>
static void
dmsolve_permute (MArray<RT> &a, const MArray<T>& b, const octave_idx_type *p)
{
octave_idx_type b_nr = b.rows ();
octave_idx_type b_nc = b.cols ();
const T *Bx = b.fortran_vec ();
a.resize (dim_vector (b_nr, b_nc));
RT *Btx = a.fortran_vec ();
for (octave_idx_type j = 0; j < b_nc; j++)
{
octave_idx_type off = j * b_nr;
for (octave_idx_type i = 0; i < b_nr; i++)
{
octave_quit ();
Btx[p[i] + off] = Bx[ i + off];
}
}
}
#if !defined (CXX_NEW_FRIEND_TEMPLATE_DECL)
static void
dmsolve_permute (MArray<double> &a, const MArray<double>& b,
const octave_idx_type *p);
static void
dmsolve_permute (MArray<Complex> &a, const MArray<double>& b,
const octave_idx_type *p);
static void
dmsolve_permute (MArray<Complex> &a, const MArray<Complex>& b,
const octave_idx_type *p);
#endif
template <class T, class RT>
static void
dmsolve_permute (MSparse<RT> &a, const MSparse<T>& b, const octave_idx_type *p)
{
octave_idx_type b_nr = b.rows ();
octave_idx_type b_nc = b.cols ();
octave_idx_type b_nz = b.nnz ();
octave_idx_type nz = 0;
a = MSparse<RT> (b_nr, b_nc, b_nz);
octave_sort<octave_idx_type> sort;
octave_idx_type *ri = a.xridx ();
OCTAVE_LOCAL_BUFFER (RT, X, b_nr);
a.xcidx (0) = 0;
for (octave_idx_type j = 0; j < b_nc; j++)
{
for (octave_idx_type i = b.cidx (j); i < b.cidx (j+1); i++)
{
octave_quit ();
octave_idx_type r = p[b.ridx (i)];
X[r] = b.data (i);
a.xridx (nz++) = p[b.ridx (i)];
}
sort.sort (ri + a.xcidx (j), nz - a.xcidx (j));
for (octave_idx_type i = a.cidx (j); i < nz; i++)
{
octave_quit ();
a.xdata (i) = X[a.xridx (i)];
}
a.xcidx (j+1) = nz;
}
}
#if !defined (CXX_NEW_FRIEND_TEMPLATE_DECL)
static void
dmsolve_permute (MSparse<double> &a, const MSparse<double>& b,
const octave_idx_type *p);
static void
dmsolve_permute (MSparse<Complex> &a, const MSparse<double>& b,
const octave_idx_type *p);
static void
dmsolve_permute (MSparse<Complex> &a, const MSparse<Complex>& b,
const octave_idx_type *p);
#endif
static void
solve_singularity_warning (double)
{
// Dummy singularity handler so that LU solver doesn't flag
// an error for numerically rank defficient matrices
}
template <class RT, class ST, class T>
RT
dmsolve (const ST &a, const T &b, octave_idx_type &info)
{
#ifdef HAVE_CXSPARSE
octave_idx_type nr = a.rows ();
octave_idx_type nc = a.cols ();
octave_idx_type b_nr = b.rows ();
octave_idx_type b_nc = b.cols ();
RT retval;
if (nr < 0 || nc < 0 || nr != b_nr)
(*current_liboctave_error_handler)
("matrix dimension mismatch in solution of minimum norm problem");
else if (nr == 0 || nc == 0 || b_nc == 0)
retval = RT (nc, b_nc, 0.0);
else
{
octave_idx_type nnz_remaining = a.nnz ();
CXSPARSE_DNAME () csm;
csm.m = nr;
csm.n = nc;
csm.x = 0;
csm.nz = -1;
csm.nzmax = a.nnz ();
// Cast away const on A, with full knowledge that CSparse won't touch it.
// Prevents the methods below making a copy of the data.
csm.p = const_cast<octave_idx_type *>(a.cidx ());
csm.i = const_cast<octave_idx_type *>(a.ridx ());
#if defined (CS_VER) && (CS_VER >= 2)
CXSPARSE_DNAME (d) *dm = CXSPARSE_DNAME(_dmperm) (&csm, 0);
octave_idx_type *p = dm->p;
octave_idx_type *q = dm->q;
#else
CXSPARSE_DNAME (d) *dm = CXSPARSE_DNAME(_dmperm) (&csm);
octave_idx_type *p = dm->P;
octave_idx_type *q = dm->Q;
#endif
OCTAVE_LOCAL_BUFFER (octave_idx_type, pinv, nr);
for (octave_idx_type i = 0; i < nr; i++)
pinv[p[i]] = i;
RT btmp;
dmsolve_permute (btmp, b, pinv);
info = 0;
retval.resize (nc, b_nc);
// Leading over-determined block
if (dm->rr[2] < nr && dm->cc[3] < nc)
{
ST m = dmsolve_extract (a, pinv, q, dm->rr[2], nr, dm->cc[3], nc,
nnz_remaining, true);
nnz_remaining -= m.nnz ();
RT mtmp =
qrsolve (m, dmsolve_extract (btmp, 0, 0, dm->rr[2], b_nr, 0,
b_nc), info);
dmsolve_insert (retval, mtmp, q, dm->cc[3], 0);
if (dm->rr[2] > 0 && !info)
{
m = dmsolve_extract (a, pinv, q, 0, dm->rr[2],
dm->cc[3], nc, nnz_remaining, true);
nnz_remaining -= m.nnz ();
RT ctmp = dmsolve_extract (btmp, 0, 0, 0,
dm->rr[2], 0, b_nc);
btmp.insert (ctmp - m * mtmp, 0, 0);
}
}
// Structurally non-singular blocks
// FIXME: Should use fine Dulmange-Mendelsohn decomposition here.
if (dm->rr[1] < dm->rr[2] && dm->cc[2] < dm->cc[3] && !info)
{
ST m = dmsolve_extract (a, pinv, q, dm->rr[1], dm->rr[2],
dm->cc[2], dm->cc[3], nnz_remaining, false);
nnz_remaining -= m.nnz ();
RT btmp2 = dmsolve_extract (btmp, 0, 0, dm->rr[1], dm->rr[2],
0, b_nc);
double rcond = 0.0;
MatrixType mtyp (MatrixType::Full);
RT mtmp = m.solve (mtyp, btmp2, info, rcond,
solve_singularity_warning, false);
if (info != 0)
{
info = 0;
mtmp = qrsolve (m, btmp2, info);
}
dmsolve_insert (retval, mtmp, q, dm->cc[2], 0);
if (dm->rr[1] > 0 && !info)
{
m = dmsolve_extract (a, pinv, q, 0, dm->rr[1], dm->cc[2],
dm->cc[3], nnz_remaining, true);
nnz_remaining -= m.nnz ();
RT ctmp = dmsolve_extract (btmp, 0, 0, 0,
dm->rr[1], 0, b_nc);
btmp.insert (ctmp - m * mtmp, 0, 0);
}
}
// Trailing under-determined block
if (dm->rr[1] > 0 && dm->cc[2] > 0 && !info)
{
ST m = dmsolve_extract (a, pinv, q, 0, dm->rr[1], 0,
dm->cc[2], nnz_remaining, true);
RT mtmp =
qrsolve (m, dmsolve_extract (btmp, 0, 0, 0, dm->rr[1] , 0,
b_nc), info);
dmsolve_insert (retval, mtmp, q, 0, 0);
}
CXSPARSE_DNAME (_dfree) (dm);
}
return retval;
#else
(*current_liboctave_error_handler)
("CXSPARSE unavailable; cannot solve minimum norm problem");
return RT ();
#endif
}
#if !defined (CXX_NEW_FRIEND_TEMPLATE_DECL)
extern Matrix
dmsolve (const SparseMatrix &a, const Matrix &b,
octave_idx_type &info);
extern ComplexMatrix
dmsolve (const SparseMatrix &a, const ComplexMatrix &b,
octave_idx_type &info);
extern ComplexMatrix
dmsolve (const SparseComplexMatrix &a, const Matrix &b,
octave_idx_type &info);
extern ComplexMatrix
dmsolve (const SparseComplexMatrix &a, const ComplexMatrix &b,
octave_idx_type &info);
extern SparseMatrix
dmsolve (const SparseMatrix &a, const SparseMatrix &b,
octave_idx_type &info);
extern SparseComplexMatrix
dmsolve (const SparseMatrix &a, const SparseComplexMatrix &b,
octave_idx_type &info);
extern SparseComplexMatrix
dmsolve (const SparseComplexMatrix &a, const SparseMatrix &b,
octave_idx_type &info);
extern SparseComplexMatrix
dmsolve (const SparseComplexMatrix &a, const SparseComplexMatrix &b,
octave_idx_type &info);
#endif
|