This file is indexed.

/usr/include/ode/odemath.h is in libode-dev 2:0.11.1-4ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
/*************************************************************************
 *                                                                       *
 * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith.       *
 * All rights reserved.  Email: russ@q12.org   Web: www.q12.org          *
 *                                                                       *
 * This library is free software; you can redistribute it and/or         *
 * modify it under the terms of EITHER:                                  *
 *   (1) The GNU Lesser General Public License as published by the Free  *
 *       Software Foundation; either version 2.1 of the License, or (at  *
 *       your option) any later version. The text of the GNU Lesser      *
 *       General Public License is included with this library in the     *
 *       file LICENSE.TXT.                                               *
 *   (2) The BSD-style license that is included with this library in     *
 *       the file LICENSE-BSD.TXT.                                       *
 *                                                                       *
 * This library is distributed in the hope that it will be useful,       *
 * but WITHOUT ANY WARRANTY; without even the implied warranty of        *
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files    *
 * LICENSE.TXT and LICENSE-BSD.TXT for more details.                     *
 *                                                                       *
 *************************************************************************/

#ifndef _ODE_ODEMATH_H_
#define _ODE_ODEMATH_H_

#include <ode/common.h>

#ifdef __GNUC__
#define PURE_INLINE extern inline
#else
#define PURE_INLINE inline
#endif

/*
 * macro to access elements i,j in an NxM matrix A, independent of the
 * matrix storage convention.
 */
#define dACCESS33(A,i,j) ((A)[(i)*4+(j)])

/*
 * Macro to test for valid floating point values
 */
#define dVALIDVEC3(v) (!(dIsNan(v[0]) || dIsNan(v[1]) || dIsNan(v[2])))
#define dVALIDVEC4(v) (!(dIsNan(v[0]) || dIsNan(v[1]) || dIsNan(v[2]) || dIsNan(v[3])))
#define dVALIDMAT3(m) (!(dIsNan(m[0]) || dIsNan(m[1]) || dIsNan(m[2]) || dIsNan(m[3]) || dIsNan(m[4]) || dIsNan(m[5]) || dIsNan(m[6]) || dIsNan(m[7]) || dIsNan(m[8]) || dIsNan(m[9]) || dIsNan(m[10]) || dIsNan(m[11])))
#define dVALIDMAT4(m) (!(dIsNan(m[0]) || dIsNan(m[1]) || dIsNan(m[2]) || dIsNan(m[3]) || dIsNan(m[4]) || dIsNan(m[5]) || dIsNan(m[6]) || dIsNan(m[7]) || dIsNan(m[8]) || dIsNan(m[9]) || dIsNan(m[10]) || dIsNan(m[11]) || dIsNan(m[12]) || dIsNan(m[13]) || dIsNan(m[14]) || dIsNan(m[15]) ))



/*
 * General purpose vector operations with other vectors or constants.
 */

#define dOP(a,op,b,c) do { \
    (a)[0] = ((b)[0]) op ((c)[0]); \
    (a)[1] = ((b)[1]) op ((c)[1]); \
    (a)[2] = ((b)[2]) op ((c)[2]); \
    } while (0)
#define dOPC(a,op,b,c) do { \
    (a)[0] = ((b)[0]) op (c); \
    (a)[1] = ((b)[1]) op (c); \
    (a)[2] = ((b)[2]) op (c); \
    } while (0)
#define dOPE(a,op,b) do {\
    (a)[0] op ((b)[0]); \
    (a)[1] op ((b)[1]); \
    (a)[2] op ((b)[2]); \
    } while (0)
#define dOPEC(a,op,c) do { \
    (a)[0] op (c); \
    (a)[1] op (c); \
    (a)[2] op (c); \
    } while (0)

/// Define an equation with operatos
/// For example this function can be used to replace
/// <PRE>
/// for (int i=0; i<3; ++i)
///   a[i] += b[i] + c[i];
/// </PRE>
#define dOPE2(a,op1,b,op2,c) do { \
    (a)[0] op1 ((b)[0]) op2 ((c)[0]); \
    (a)[1] op1 ((b)[1]) op2 ((c)[1]); \
    (a)[2] op1 ((b)[2]) op2 ((c)[2]); \
    } while (0)

/*
 * Length, and squared length helpers. dLENGTH returns the length of a dVector3.
 * dLENGTHSQUARED return the squared length of a dVector3.
 */

#define dLENGTHSQUARED(a) (((a)[0])*((a)[0]) + ((a)[1])*((a)[1]) + ((a)[2])*((a)[2]))

#ifdef __cplusplus

PURE_INLINE dReal dLENGTH (const dReal *a) { return dSqrt(dLENGTHSQUARED(a)); }

#else

#define dLENGTH(a) ( dSqrt( ((a)[0])*((a)[0]) + ((a)[1])*((a)[1]) + ((a)[2])*((a)[2]) ) )

#endif /* __cplusplus */





/*
 * 3-way dot product. dDOTpq means that elements of `a' and `b' are spaced
 * p and q indexes apart respectively. dDOT() means dDOT11.
 * in C++ we could use function templates to get all the versions of these
 * functions - but on some compilers this will result in sub-optimal code.
 */

#define dDOTpq(a,b,p,q) ((a)[0]*(b)[0] + (a)[p]*(b)[q] + (a)[2*(p)]*(b)[2*(q)])

#ifdef __cplusplus

PURE_INLINE dReal dDOT   (const dReal *a, const dReal *b) { return dDOTpq(a,b,1,1); }
PURE_INLINE dReal dDOT13 (const dReal *a, const dReal *b) { return dDOTpq(a,b,1,3); }
PURE_INLINE dReal dDOT31 (const dReal *a, const dReal *b) { return dDOTpq(a,b,3,1); }
PURE_INLINE dReal dDOT33 (const dReal *a, const dReal *b) { return dDOTpq(a,b,3,3); }
PURE_INLINE dReal dDOT14 (const dReal *a, const dReal *b) { return dDOTpq(a,b,1,4); }
PURE_INLINE dReal dDOT41 (const dReal *a, const dReal *b) { return dDOTpq(a,b,4,1); }
PURE_INLINE dReal dDOT44 (const dReal *a, const dReal *b) { return dDOTpq(a,b,4,4); }

#else

#define dDOT(a,b)   dDOTpq(a,b,1,1)
#define dDOT13(a,b) dDOTpq(a,b,1,3)
#define dDOT31(a,b) dDOTpq(a,b,3,1)
#define dDOT33(a,b) dDOTpq(a,b,3,3)
#define dDOT14(a,b) dDOTpq(a,b,1,4)
#define dDOT41(a,b) dDOTpq(a,b,4,1)
#define dDOT44(a,b) dDOTpq(a,b,4,4)

#endif /* __cplusplus */


/*
 * cross product, set a = b x c. dCROSSpqr means that elements of `a', `b'
 * and `c' are spaced p, q and r indexes apart respectively.
 * dCROSS() means dCROSS111. `op' is normally `=', but you can set it to
 * +=, -= etc to get other effects.
 */

#define dCROSS(a,op,b,c) \
do { \
  (a)[0] op ((b)[1]*(c)[2] - (b)[2]*(c)[1]); \
  (a)[1] op ((b)[2]*(c)[0] - (b)[0]*(c)[2]); \
  (a)[2] op ((b)[0]*(c)[1] - (b)[1]*(c)[0]); \
} while(0)
#define dCROSSpqr(a,op,b,c,p,q,r) \
do { \
  (a)[  0] op ((b)[  q]*(c)[2*r] - (b)[2*q]*(c)[  r]); \
  (a)[  p] op ((b)[2*q]*(c)[  0] - (b)[  0]*(c)[2*r]); \
  (a)[2*p] op ((b)[  0]*(c)[  r] - (b)[  q]*(c)[  0]); \
} while(0)
#define dCROSS114(a,op,b,c) dCROSSpqr(a,op,b,c,1,1,4)
#define dCROSS141(a,op,b,c) dCROSSpqr(a,op,b,c,1,4,1)
#define dCROSS144(a,op,b,c) dCROSSpqr(a,op,b,c,1,4,4)
#define dCROSS411(a,op,b,c) dCROSSpqr(a,op,b,c,4,1,1)
#define dCROSS414(a,op,b,c) dCROSSpqr(a,op,b,c,4,1,4)
#define dCROSS441(a,op,b,c) dCROSSpqr(a,op,b,c,4,4,1)
#define dCROSS444(a,op,b,c) dCROSSpqr(a,op,b,c,4,4,4)


/*
 * set a 3x3 submatrix of A to a matrix such that submatrix(A)*b = a x b.
 * A is stored by rows, and has `skip' elements per row. the matrix is
 * assumed to be already zero, so this does not write zero elements!
 * if (plus,minus) is (+,-) then a positive version will be written.
 * if (plus,minus) is (-,+) then a negative version will be written.
 */

#define dCROSSMAT(A,a,skip,plus,minus) \
do { \
  (A)[1] = minus (a)[2]; \
  (A)[2] = plus (a)[1]; \
  (A)[(skip)+0] = plus (a)[2]; \
  (A)[(skip)+2] = minus (a)[0]; \
  (A)[2*(skip)+0] = minus (a)[1]; \
  (A)[2*(skip)+1] = plus (a)[0]; \
} while(0)


/*
 * compute the distance between two 3D-vectors
 */

#ifdef __cplusplus
PURE_INLINE dReal dDISTANCE (const dVector3 a, const dVector3 b)
	{ return dSqrt( (a[0]-b[0])*(a[0]-b[0]) + (a[1]-b[1])*(a[1]-b[1]) + (a[2]-b[2])*(a[2]-b[2]) ); }
#else
#define dDISTANCE(a,b) \
	(dSqrt( ((a)[0]-(b)[0])*((a)[0]-(b)[0]) + ((a)[1]-(b)[1])*((a)[1]-(b)[1]) + ((a)[2]-(b)[2])*((a)[2]-(b)[2]) ))
#endif


/*
 * special case matrix multipication, with operator selection
 */

#define dMULTIPLYOP0_331(A,op,B,C) \
do { \
  (A)[0] op dDOT((B),(C)); \
  (A)[1] op dDOT((B+4),(C)); \
  (A)[2] op dDOT((B+8),(C)); \
} while(0)
#define dMULTIPLYOP1_331(A,op,B,C) \
do { \
  (A)[0] op dDOT41((B),(C)); \
  (A)[1] op dDOT41((B+1),(C)); \
  (A)[2] op dDOT41((B+2),(C)); \
} while(0)
#define dMULTIPLYOP0_133(A,op,B,C) \
do { \
  (A)[0] op dDOT14((B),(C)); \
  (A)[1] op dDOT14((B),(C+1)); \
  (A)[2] op dDOT14((B),(C+2)); \
} while(0)
#define dMULTIPLYOP0_333(A,op,B,C) \
do { \
  (A)[0] op dDOT14((B),(C)); \
  (A)[1] op dDOT14((B),(C+1)); \
  (A)[2] op dDOT14((B),(C+2)); \
  (A)[4] op dDOT14((B+4),(C)); \
  (A)[5] op dDOT14((B+4),(C+1)); \
  (A)[6] op dDOT14((B+4),(C+2)); \
  (A)[8] op dDOT14((B+8),(C)); \
  (A)[9] op dDOT14((B+8),(C+1)); \
  (A)[10] op dDOT14((B+8),(C+2)); \
} while(0)
#define dMULTIPLYOP1_333(A,op,B,C) \
do { \
  (A)[0] op dDOT44((B),(C)); \
  (A)[1] op dDOT44((B),(C+1)); \
  (A)[2] op dDOT44((B),(C+2)); \
  (A)[4] op dDOT44((B+1),(C)); \
  (A)[5] op dDOT44((B+1),(C+1)); \
  (A)[6] op dDOT44((B+1),(C+2)); \
  (A)[8] op dDOT44((B+2),(C)); \
  (A)[9] op dDOT44((B+2),(C+1)); \
  (A)[10] op dDOT44((B+2),(C+2)); \
} while(0)
#define dMULTIPLYOP2_333(A,op,B,C) \
do { \
  (A)[0] op dDOT((B),(C)); \
  (A)[1] op dDOT((B),(C+4)); \
  (A)[2] op dDOT((B),(C+8)); \
  (A)[4] op dDOT((B+4),(C)); \
  (A)[5] op dDOT((B+4),(C+4)); \
  (A)[6] op dDOT((B+4),(C+8)); \
  (A)[8] op dDOT((B+8),(C)); \
  (A)[9] op dDOT((B+8),(C+4)); \
  (A)[10] op dDOT((B+8),(C+8)); \
} while(0)

#ifdef __cplusplus

#define DECL template <class TA, class TB, class TC> PURE_INLINE void

/* 
Note: NEVER call any of these functions/macros with the same variable for A and C, 
it is not equivalent to A*=B.
*/

DECL dMULTIPLY0_331(TA *A, const TB *B, const TC *C) { dMULTIPLYOP0_331(A,=,B,C); }
DECL dMULTIPLY1_331(TA *A, const TB *B, const TC *C) { dMULTIPLYOP1_331(A,=,B,C); }
DECL dMULTIPLY0_133(TA *A, const TB *B, const TC *C) { dMULTIPLYOP0_133(A,=,B,C); }
DECL dMULTIPLY0_333(TA *A, const TB *B, const TC *C) { dMULTIPLYOP0_333(A,=,B,C); }
DECL dMULTIPLY1_333(TA *A, const TB *B, const TC *C) { dMULTIPLYOP1_333(A,=,B,C); }
DECL dMULTIPLY2_333(TA *A, const TB *B, const TC *C) { dMULTIPLYOP2_333(A,=,B,C); }

DECL dMULTIPLYADD0_331(TA *A, const TB *B, const TC *C) { dMULTIPLYOP0_331(A,+=,B,C); }
DECL dMULTIPLYADD1_331(TA *A, const TB *B, const TC *C) { dMULTIPLYOP1_331(A,+=,B,C); }
DECL dMULTIPLYADD0_133(TA *A, const TB *B, const TC *C) { dMULTIPLYOP0_133(A,+=,B,C); }
DECL dMULTIPLYADD0_333(TA *A, const TB *B, const TC *C) { dMULTIPLYOP0_333(A,+=,B,C); }
DECL dMULTIPLYADD1_333(TA *A, const TB *B, const TC *C) { dMULTIPLYOP1_333(A,+=,B,C); }
DECL dMULTIPLYADD2_333(TA *A, const TB *B, const TC *C) { dMULTIPLYOP2_333(A,+=,B,C); }

#undef DECL

#else

#define dMULTIPLY0_331(A,B,C) dMULTIPLYOP0_331(A,=,B,C)
#define dMULTIPLY1_331(A,B,C) dMULTIPLYOP1_331(A,=,B,C)
#define dMULTIPLY0_133(A,B,C) dMULTIPLYOP0_133(A,=,B,C)
#define dMULTIPLY0_333(A,B,C) dMULTIPLYOP0_333(A,=,B,C)
#define dMULTIPLY1_333(A,B,C) dMULTIPLYOP1_333(A,=,B,C)
#define dMULTIPLY2_333(A,B,C) dMULTIPLYOP2_333(A,=,B,C)

#define dMULTIPLYADD0_331(A,B,C) dMULTIPLYOP0_331(A,+=,B,C)
#define dMULTIPLYADD1_331(A,B,C) dMULTIPLYOP1_331(A,+=,B,C)
#define dMULTIPLYADD0_133(A,B,C) dMULTIPLYOP0_133(A,+=,B,C)
#define dMULTIPLYADD0_333(A,B,C) dMULTIPLYOP0_333(A,+=,B,C)
#define dMULTIPLYADD1_333(A,B,C) dMULTIPLYOP1_333(A,+=,B,C)
#define dMULTIPLYADD2_333(A,B,C) dMULTIPLYOP2_333(A,+=,B,C)

#endif


#ifdef __cplusplus
extern "C" {
#endif

/*
 * normalize 3x1 and 4x1 vectors (i.e. scale them to unit length)
 */

#if defined(__ODE__)

int  _dSafeNormalize3 (dVector3 a);
int  _dSafeNormalize4 (dVector4 a);
	
static __inline void _dNormalize3(dVector3 a)
{
	int bNormalizationResult = _dSafeNormalize3(a);
	dIASSERT(bNormalizationResult);
	dVARIABLEUSED(bNormalizationResult);
}

static __inline void _dNormalize4(dVector4 a)
{
	int bNormalizationResult = _dSafeNormalize4(a);
	dIASSERT(bNormalizationResult);
	dVARIABLEUSED(bNormalizationResult);
}

#endif // defined(__ODE__)

// For DLL export
ODE_API int  dSafeNormalize3 (dVector3 a);
ODE_API int  dSafeNormalize4 (dVector4 a);
ODE_API void dNormalize3 (dVector3 a); // Potentially asserts on zero vec
ODE_API void dNormalize4 (dVector4 a); // Potentially asserts on zero vec

#if defined(__ODE__)

// For internal use
#define dSafeNormalize3(a) _dSafeNormalize3(a)
#define dSafeNormalize4(a) _dSafeNormalize4(a)
#define dNormalize3(a) _dNormalize3(a)
#define dNormalize4(a) _dNormalize4(a)

#endif // defined(__ODE__)

/*
 * given a unit length "normal" vector n, generate vectors p and q vectors
 * that are an orthonormal basis for the plane space perpendicular to n.
 * i.e. this makes p,q such that n,p,q are all perpendicular to each other.
 * q will equal n x p. if n is not unit length then p will be unit length but
 * q wont be.
 */

ODE_API void dPlaneSpace (const dVector3 n, dVector3 p, dVector3 q);
/* Makes sure the matrix is a proper rotation */
ODE_API void dOrthogonalizeR(dMatrix3 m);



#ifdef __cplusplus
}
#endif

#endif