/usr/include/ode/odemath.h is in libode-dev 2:0.11.1-4ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 | /*************************************************************************
* *
* Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. *
* All rights reserved. Email: russ@q12.org Web: www.q12.org *
* *
* This library is free software; you can redistribute it and/or *
* modify it under the terms of EITHER: *
* (1) The GNU Lesser General Public License as published by the Free *
* Software Foundation; either version 2.1 of the License, or (at *
* your option) any later version. The text of the GNU Lesser *
* General Public License is included with this library in the *
* file LICENSE.TXT. *
* (2) The BSD-style license that is included with this library in *
* the file LICENSE-BSD.TXT. *
* *
* This library is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files *
* LICENSE.TXT and LICENSE-BSD.TXT for more details. *
* *
*************************************************************************/
#ifndef _ODE_ODEMATH_H_
#define _ODE_ODEMATH_H_
#include <ode/common.h>
#ifdef __GNUC__
#define PURE_INLINE extern inline
#else
#define PURE_INLINE inline
#endif
/*
* macro to access elements i,j in an NxM matrix A, independent of the
* matrix storage convention.
*/
#define dACCESS33(A,i,j) ((A)[(i)*4+(j)])
/*
* Macro to test for valid floating point values
*/
#define dVALIDVEC3(v) (!(dIsNan(v[0]) || dIsNan(v[1]) || dIsNan(v[2])))
#define dVALIDVEC4(v) (!(dIsNan(v[0]) || dIsNan(v[1]) || dIsNan(v[2]) || dIsNan(v[3])))
#define dVALIDMAT3(m) (!(dIsNan(m[0]) || dIsNan(m[1]) || dIsNan(m[2]) || dIsNan(m[3]) || dIsNan(m[4]) || dIsNan(m[5]) || dIsNan(m[6]) || dIsNan(m[7]) || dIsNan(m[8]) || dIsNan(m[9]) || dIsNan(m[10]) || dIsNan(m[11])))
#define dVALIDMAT4(m) (!(dIsNan(m[0]) || dIsNan(m[1]) || dIsNan(m[2]) || dIsNan(m[3]) || dIsNan(m[4]) || dIsNan(m[5]) || dIsNan(m[6]) || dIsNan(m[7]) || dIsNan(m[8]) || dIsNan(m[9]) || dIsNan(m[10]) || dIsNan(m[11]) || dIsNan(m[12]) || dIsNan(m[13]) || dIsNan(m[14]) || dIsNan(m[15]) ))
/*
* General purpose vector operations with other vectors or constants.
*/
#define dOP(a,op,b,c) do { \
(a)[0] = ((b)[0]) op ((c)[0]); \
(a)[1] = ((b)[1]) op ((c)[1]); \
(a)[2] = ((b)[2]) op ((c)[2]); \
} while (0)
#define dOPC(a,op,b,c) do { \
(a)[0] = ((b)[0]) op (c); \
(a)[1] = ((b)[1]) op (c); \
(a)[2] = ((b)[2]) op (c); \
} while (0)
#define dOPE(a,op,b) do {\
(a)[0] op ((b)[0]); \
(a)[1] op ((b)[1]); \
(a)[2] op ((b)[2]); \
} while (0)
#define dOPEC(a,op,c) do { \
(a)[0] op (c); \
(a)[1] op (c); \
(a)[2] op (c); \
} while (0)
/// Define an equation with operatos
/// For example this function can be used to replace
/// <PRE>
/// for (int i=0; i<3; ++i)
/// a[i] += b[i] + c[i];
/// </PRE>
#define dOPE2(a,op1,b,op2,c) do { \
(a)[0] op1 ((b)[0]) op2 ((c)[0]); \
(a)[1] op1 ((b)[1]) op2 ((c)[1]); \
(a)[2] op1 ((b)[2]) op2 ((c)[2]); \
} while (0)
/*
* Length, and squared length helpers. dLENGTH returns the length of a dVector3.
* dLENGTHSQUARED return the squared length of a dVector3.
*/
#define dLENGTHSQUARED(a) (((a)[0])*((a)[0]) + ((a)[1])*((a)[1]) + ((a)[2])*((a)[2]))
#ifdef __cplusplus
PURE_INLINE dReal dLENGTH (const dReal *a) { return dSqrt(dLENGTHSQUARED(a)); }
#else
#define dLENGTH(a) ( dSqrt( ((a)[0])*((a)[0]) + ((a)[1])*((a)[1]) + ((a)[2])*((a)[2]) ) )
#endif /* __cplusplus */
/*
* 3-way dot product. dDOTpq means that elements of `a' and `b' are spaced
* p and q indexes apart respectively. dDOT() means dDOT11.
* in C++ we could use function templates to get all the versions of these
* functions - but on some compilers this will result in sub-optimal code.
*/
#define dDOTpq(a,b,p,q) ((a)[0]*(b)[0] + (a)[p]*(b)[q] + (a)[2*(p)]*(b)[2*(q)])
#ifdef __cplusplus
PURE_INLINE dReal dDOT (const dReal *a, const dReal *b) { return dDOTpq(a,b,1,1); }
PURE_INLINE dReal dDOT13 (const dReal *a, const dReal *b) { return dDOTpq(a,b,1,3); }
PURE_INLINE dReal dDOT31 (const dReal *a, const dReal *b) { return dDOTpq(a,b,3,1); }
PURE_INLINE dReal dDOT33 (const dReal *a, const dReal *b) { return dDOTpq(a,b,3,3); }
PURE_INLINE dReal dDOT14 (const dReal *a, const dReal *b) { return dDOTpq(a,b,1,4); }
PURE_INLINE dReal dDOT41 (const dReal *a, const dReal *b) { return dDOTpq(a,b,4,1); }
PURE_INLINE dReal dDOT44 (const dReal *a, const dReal *b) { return dDOTpq(a,b,4,4); }
#else
#define dDOT(a,b) dDOTpq(a,b,1,1)
#define dDOT13(a,b) dDOTpq(a,b,1,3)
#define dDOT31(a,b) dDOTpq(a,b,3,1)
#define dDOT33(a,b) dDOTpq(a,b,3,3)
#define dDOT14(a,b) dDOTpq(a,b,1,4)
#define dDOT41(a,b) dDOTpq(a,b,4,1)
#define dDOT44(a,b) dDOTpq(a,b,4,4)
#endif /* __cplusplus */
/*
* cross product, set a = b x c. dCROSSpqr means that elements of `a', `b'
* and `c' are spaced p, q and r indexes apart respectively.
* dCROSS() means dCROSS111. `op' is normally `=', but you can set it to
* +=, -= etc to get other effects.
*/
#define dCROSS(a,op,b,c) \
do { \
(a)[0] op ((b)[1]*(c)[2] - (b)[2]*(c)[1]); \
(a)[1] op ((b)[2]*(c)[0] - (b)[0]*(c)[2]); \
(a)[2] op ((b)[0]*(c)[1] - (b)[1]*(c)[0]); \
} while(0)
#define dCROSSpqr(a,op,b,c,p,q,r) \
do { \
(a)[ 0] op ((b)[ q]*(c)[2*r] - (b)[2*q]*(c)[ r]); \
(a)[ p] op ((b)[2*q]*(c)[ 0] - (b)[ 0]*(c)[2*r]); \
(a)[2*p] op ((b)[ 0]*(c)[ r] - (b)[ q]*(c)[ 0]); \
} while(0)
#define dCROSS114(a,op,b,c) dCROSSpqr(a,op,b,c,1,1,4)
#define dCROSS141(a,op,b,c) dCROSSpqr(a,op,b,c,1,4,1)
#define dCROSS144(a,op,b,c) dCROSSpqr(a,op,b,c,1,4,4)
#define dCROSS411(a,op,b,c) dCROSSpqr(a,op,b,c,4,1,1)
#define dCROSS414(a,op,b,c) dCROSSpqr(a,op,b,c,4,1,4)
#define dCROSS441(a,op,b,c) dCROSSpqr(a,op,b,c,4,4,1)
#define dCROSS444(a,op,b,c) dCROSSpqr(a,op,b,c,4,4,4)
/*
* set a 3x3 submatrix of A to a matrix such that submatrix(A)*b = a x b.
* A is stored by rows, and has `skip' elements per row. the matrix is
* assumed to be already zero, so this does not write zero elements!
* if (plus,minus) is (+,-) then a positive version will be written.
* if (plus,minus) is (-,+) then a negative version will be written.
*/
#define dCROSSMAT(A,a,skip,plus,minus) \
do { \
(A)[1] = minus (a)[2]; \
(A)[2] = plus (a)[1]; \
(A)[(skip)+0] = plus (a)[2]; \
(A)[(skip)+2] = minus (a)[0]; \
(A)[2*(skip)+0] = minus (a)[1]; \
(A)[2*(skip)+1] = plus (a)[0]; \
} while(0)
/*
* compute the distance between two 3D-vectors
*/
#ifdef __cplusplus
PURE_INLINE dReal dDISTANCE (const dVector3 a, const dVector3 b)
{ return dSqrt( (a[0]-b[0])*(a[0]-b[0]) + (a[1]-b[1])*(a[1]-b[1]) + (a[2]-b[2])*(a[2]-b[2]) ); }
#else
#define dDISTANCE(a,b) \
(dSqrt( ((a)[0]-(b)[0])*((a)[0]-(b)[0]) + ((a)[1]-(b)[1])*((a)[1]-(b)[1]) + ((a)[2]-(b)[2])*((a)[2]-(b)[2]) ))
#endif
/*
* special case matrix multipication, with operator selection
*/
#define dMULTIPLYOP0_331(A,op,B,C) \
do { \
(A)[0] op dDOT((B),(C)); \
(A)[1] op dDOT((B+4),(C)); \
(A)[2] op dDOT((B+8),(C)); \
} while(0)
#define dMULTIPLYOP1_331(A,op,B,C) \
do { \
(A)[0] op dDOT41((B),(C)); \
(A)[1] op dDOT41((B+1),(C)); \
(A)[2] op dDOT41((B+2),(C)); \
} while(0)
#define dMULTIPLYOP0_133(A,op,B,C) \
do { \
(A)[0] op dDOT14((B),(C)); \
(A)[1] op dDOT14((B),(C+1)); \
(A)[2] op dDOT14((B),(C+2)); \
} while(0)
#define dMULTIPLYOP0_333(A,op,B,C) \
do { \
(A)[0] op dDOT14((B),(C)); \
(A)[1] op dDOT14((B),(C+1)); \
(A)[2] op dDOT14((B),(C+2)); \
(A)[4] op dDOT14((B+4),(C)); \
(A)[5] op dDOT14((B+4),(C+1)); \
(A)[6] op dDOT14((B+4),(C+2)); \
(A)[8] op dDOT14((B+8),(C)); \
(A)[9] op dDOT14((B+8),(C+1)); \
(A)[10] op dDOT14((B+8),(C+2)); \
} while(0)
#define dMULTIPLYOP1_333(A,op,B,C) \
do { \
(A)[0] op dDOT44((B),(C)); \
(A)[1] op dDOT44((B),(C+1)); \
(A)[2] op dDOT44((B),(C+2)); \
(A)[4] op dDOT44((B+1),(C)); \
(A)[5] op dDOT44((B+1),(C+1)); \
(A)[6] op dDOT44((B+1),(C+2)); \
(A)[8] op dDOT44((B+2),(C)); \
(A)[9] op dDOT44((B+2),(C+1)); \
(A)[10] op dDOT44((B+2),(C+2)); \
} while(0)
#define dMULTIPLYOP2_333(A,op,B,C) \
do { \
(A)[0] op dDOT((B),(C)); \
(A)[1] op dDOT((B),(C+4)); \
(A)[2] op dDOT((B),(C+8)); \
(A)[4] op dDOT((B+4),(C)); \
(A)[5] op dDOT((B+4),(C+4)); \
(A)[6] op dDOT((B+4),(C+8)); \
(A)[8] op dDOT((B+8),(C)); \
(A)[9] op dDOT((B+8),(C+4)); \
(A)[10] op dDOT((B+8),(C+8)); \
} while(0)
#ifdef __cplusplus
#define DECL template <class TA, class TB, class TC> PURE_INLINE void
/*
Note: NEVER call any of these functions/macros with the same variable for A and C,
it is not equivalent to A*=B.
*/
DECL dMULTIPLY0_331(TA *A, const TB *B, const TC *C) { dMULTIPLYOP0_331(A,=,B,C); }
DECL dMULTIPLY1_331(TA *A, const TB *B, const TC *C) { dMULTIPLYOP1_331(A,=,B,C); }
DECL dMULTIPLY0_133(TA *A, const TB *B, const TC *C) { dMULTIPLYOP0_133(A,=,B,C); }
DECL dMULTIPLY0_333(TA *A, const TB *B, const TC *C) { dMULTIPLYOP0_333(A,=,B,C); }
DECL dMULTIPLY1_333(TA *A, const TB *B, const TC *C) { dMULTIPLYOP1_333(A,=,B,C); }
DECL dMULTIPLY2_333(TA *A, const TB *B, const TC *C) { dMULTIPLYOP2_333(A,=,B,C); }
DECL dMULTIPLYADD0_331(TA *A, const TB *B, const TC *C) { dMULTIPLYOP0_331(A,+=,B,C); }
DECL dMULTIPLYADD1_331(TA *A, const TB *B, const TC *C) { dMULTIPLYOP1_331(A,+=,B,C); }
DECL dMULTIPLYADD0_133(TA *A, const TB *B, const TC *C) { dMULTIPLYOP0_133(A,+=,B,C); }
DECL dMULTIPLYADD0_333(TA *A, const TB *B, const TC *C) { dMULTIPLYOP0_333(A,+=,B,C); }
DECL dMULTIPLYADD1_333(TA *A, const TB *B, const TC *C) { dMULTIPLYOP1_333(A,+=,B,C); }
DECL dMULTIPLYADD2_333(TA *A, const TB *B, const TC *C) { dMULTIPLYOP2_333(A,+=,B,C); }
#undef DECL
#else
#define dMULTIPLY0_331(A,B,C) dMULTIPLYOP0_331(A,=,B,C)
#define dMULTIPLY1_331(A,B,C) dMULTIPLYOP1_331(A,=,B,C)
#define dMULTIPLY0_133(A,B,C) dMULTIPLYOP0_133(A,=,B,C)
#define dMULTIPLY0_333(A,B,C) dMULTIPLYOP0_333(A,=,B,C)
#define dMULTIPLY1_333(A,B,C) dMULTIPLYOP1_333(A,=,B,C)
#define dMULTIPLY2_333(A,B,C) dMULTIPLYOP2_333(A,=,B,C)
#define dMULTIPLYADD0_331(A,B,C) dMULTIPLYOP0_331(A,+=,B,C)
#define dMULTIPLYADD1_331(A,B,C) dMULTIPLYOP1_331(A,+=,B,C)
#define dMULTIPLYADD0_133(A,B,C) dMULTIPLYOP0_133(A,+=,B,C)
#define dMULTIPLYADD0_333(A,B,C) dMULTIPLYOP0_333(A,+=,B,C)
#define dMULTIPLYADD1_333(A,B,C) dMULTIPLYOP1_333(A,+=,B,C)
#define dMULTIPLYADD2_333(A,B,C) dMULTIPLYOP2_333(A,+=,B,C)
#endif
#ifdef __cplusplus
extern "C" {
#endif
/*
* normalize 3x1 and 4x1 vectors (i.e. scale them to unit length)
*/
#if defined(__ODE__)
int _dSafeNormalize3 (dVector3 a);
int _dSafeNormalize4 (dVector4 a);
static __inline void _dNormalize3(dVector3 a)
{
int bNormalizationResult = _dSafeNormalize3(a);
dIASSERT(bNormalizationResult);
dVARIABLEUSED(bNormalizationResult);
}
static __inline void _dNormalize4(dVector4 a)
{
int bNormalizationResult = _dSafeNormalize4(a);
dIASSERT(bNormalizationResult);
dVARIABLEUSED(bNormalizationResult);
}
#endif // defined(__ODE__)
// For DLL export
ODE_API int dSafeNormalize3 (dVector3 a);
ODE_API int dSafeNormalize4 (dVector4 a);
ODE_API void dNormalize3 (dVector3 a); // Potentially asserts on zero vec
ODE_API void dNormalize4 (dVector4 a); // Potentially asserts on zero vec
#if defined(__ODE__)
// For internal use
#define dSafeNormalize3(a) _dSafeNormalize3(a)
#define dSafeNormalize4(a) _dSafeNormalize4(a)
#define dNormalize3(a) _dNormalize3(a)
#define dNormalize4(a) _dNormalize4(a)
#endif // defined(__ODE__)
/*
* given a unit length "normal" vector n, generate vectors p and q vectors
* that are an orthonormal basis for the plane space perpendicular to n.
* i.e. this makes p,q such that n,p,q are all perpendicular to each other.
* q will equal n x p. if n is not unit length then p will be unit length but
* q wont be.
*/
ODE_API void dPlaneSpace (const dVector3 n, dVector3 p, dVector3 q);
/* Makes sure the matrix is a proper rotation */
ODE_API void dOrthogonalizeR(dMatrix3 m);
#ifdef __cplusplus
}
#endif
#endif
|